

Water Operations **2017 Annual Report**

10150 Bottom Wood Lake Road Lake Country, British Columbia V4V 2M1 Ph: 250-766-6677 Fax: 250-766-0200 lakecountry.bc.ca

LAKE COUNTRY

DISTRICT OF LAKE COUNTRY

Water Operations Annual Report - 2017

Prepared For: INTERIOR HEALTH AUTHORITY 1440 – 14th Avenue Vernon, BC V1B 2T1

Prepared By:

Patti Meger, Water Quality Technician

Brent Lashuk, Water Quality Assistant, term Co-op

Reviewed By:

Kiel Wilkie, Engineering Tech II

Mike Mitchell, Utility Superintendent

Table of Contents

WATER SOURCES AND OPERATIONS	5
2017 Overview	5
Systems Descriptions and Classification	5
Water Demands	5
Water Sources	6
2017 Flooding	
Vernon Creek Intake	
Oyama Creek Intake	
Intakes along Okanagan Lake	10
Cross Connection Control Program (CCCP)	11
Annual Operations Summary	11
2017 Operations Project Highlights	11
Capital Works Improvements	13
Eldorado Treated Water Reservoir and Glenmore Booster Station Project	
Camp Road Public Works Yard	14
Emergency Response Plan	14
DISTRIBUTION WATER QUALITY	15
Water Chemistry background	15
Bacteriological Background	
Beaver Lake Source	
Okanagan Lake Source	
Oyama Lake Source	
Kalamalka Lake Source	
Coral Beach Water System	21
Lake Pine Water System	22
Water Quality Advisory and Boil Water Notice	22
Service Disruptions	23
Trihalomethanes (THM's)	2 4
Instrument Calibration and Quality Control	27
Giardia Performance Monitoring: CT calculations Beaver Lake Source	27
SOURCE SAMPLING (RAW WATER)	28
Raw Water Reservoirs/Intakes	35

District of Lake Country	2017 Water Operations Annual Report
WATERSHED MANAGEMENT	
Watershed Source Water Assessment Plans:	
Range Management	39
Forestry	41
APPENDICES	44
Appendix A – Summary of Positive Bacteriological Results in Dist	ribution44
Appendix B – District of lake Country Sampling Sites	45
Appendix C – 2017 Giardia Performance Monitoring	
Appendix D – Nutrient Sampling Upland Drinking Water Reservo	irs50
Appendix E – Beaver Lake & Oyama Lake Levels and Discharge	53
Appendix F – Drought Forecast for Beaver Lake & Oyama Lake	55
Appendix G – 2017 SOURCE AREA MAP	57
Appendix H – Kalamalka UV Station log Sheets	58
Appendix I – Environmental Operators Certification Program (EC	CP) 70

Water Sources and Operations

2017 Overview

The following is intended to inform and summarize 2017 data collections, observations, and work completed by District of Lake Country staff with regards to water operations and water quality.

Water operations highlights include:

- Total completion of the Universal Water Metering project
- Implementation of a metered rate structure for all customers
- Okanagan Centre Rd. East Service Renewal Project
- Eldorado Treated Reservoir construction
- Camp Road Public Works Shop Improvements
- Flooding restoration works and repair Oyama Creek Intake

Systems Descriptions and Classification

The District of Lake Country is a growing municipality with an approximate population of 14,000 people. Not all of these 14,000 residents are connected to the District's regulated water systems. The primary upland sources regulated by the District include the reservoirs: Beaver Lake, Crooked Lake, Oyama Lake, and Damer Lake. The lower elevation reservoirs are Okanagan Lake (3 separate intakes) and Kalamalka Lake.

Infrastructure within the District owned water systems includes 6 storage dams, 9 reservoirs, 6 chlorine injection systems, 8 pump houses, 3 pressure boosting stations, 36 pressure reducing stations, 79 pressure reducing valves, more than 400 hydrants, and approximately 200 km of water distribution mains.

Water Demands

Each water source or water system within the District has varying levels of consumption demand. The primary factors that affect demand are the total number of connections to the water system and the type of water connection. Residential, commercial, industrial, institutional, seasonal irrigation and agricultural connections are the different types of customers connected to the different water systems. Total water use among the sources and water systems in 2017 was 8,533,104 cubic meters (see Figure 1 for water consumption by source).

Water demand in 2017 was slightly below the 6 year average of 8.8 million cubic meters. Large increases in Okanagan Lake and Kalamalka Lake demand is seen in spring. This is due to the tendency of upland reservoirs to have an increase in particulates in the water from spring freshet. Creek flows increase and carry with them soil and organic matter. This inevitably leads to an increase in turbidity and colour each spring, therefore Beaver Lake and Oyama Lake Customers are supplied with Okanagan Lake and Kalamalka Lake water, respectively. The Okanagan Lake and Kalamalka Lake source typically exhibits higher quality drinking water characteristics than the Oyama and Beaver Lake sources.

The 2017 record setting flood waters carried enormous amounts of debris through Vernon Creek and Oyama Creek, leading to the upland reservoirs to be kept offline slightly longer than previous years. Water

use was restricted to domestic use only from May 8th to May 17th, and then limited irrigational use until May 30th, when upland sources were useable.

Rapid onset of summer weather in June led to a sharp increase in demand, peaking at above average total demand in late July. 2017 set the record in Kelowna for least summer precipitation and hottest July and August on record, with 74 days of no measurable amount of precipitation. With Lake Country feeling the same drought effects, water restriction were put in place in September.

Figure 1. 2017 DLC water demands from each source reported as cubic meters per month. Zero demand on the Oyama lake source is due to traditional Oyama source customers switched to Kalamalka lake source during low consumption months.

Water Sources

The District uses and monitors four separate water sources:

- 1. Beaver Lake (Crooked Lake chain flows into Beaver Lake)
- 2. Oyama Lake (Damer Lake flows into Oyama Creek)
- 3. Okanagan Lake
- 4. Kalamalka Lake

See appendix G for source area map.

Left: Crooked Lake dam spillway. Right: Oyama Lake dam spillway.

The Oyama Lake snow pack for 2017 was an average level. February and March measurements were below mean values but April and May values were slightly above. The water equivalence of the highest measured value in 2017 was 182 mm, at the beginning of April. To see the historical snow survey data for Oyama Lake please visit the BC River Forecast Centers website, under manual snow survey data, number 2F19.

See Appendix E for 2016 Oyama and Beaver Lake level and Discharge.

During spring freshet and heavy rain events, large quantities of water flow though both Beaver Lake and Oyama Lake sources, commonly causing large spikes in turbidity and colour. When water quality becomes compromised due to rapid increased flows, the District switches upland source customers (Beaver and Oyama Lake) to lower elevation sources (Okanagan and Kalamalka Lake).

Eldorado drinking water reservoir (left) fed by Vernon Creek Intake (right).

2017 Flooding

The immense upland flow, in April and May of 2017, increased lower reservoirs to above 200-year flood levels. Heavy precipitation in the fall of 2016 saturated soils and filled upland reservoirs, reducing the amount of storage for spring snowmelt. Unusual winter weather followed; high snow levels accumulating at lower elevations, while higher elevations had a below average snowpack.

Finally, abnormally wet spring conditions added to the perfect storm and the following months would surpass all previous records of flooding in the Okanagan.

Vernon Creek Intake

The upland intakes experienced significant damage during a large rain event on May 5th and 6th that combined with the lower snow melt. The massive flows contained large amounts of debris including large boulders and trees. The Vernon Creek intake, which was cleaned the previous year, was filled to approximately 50% with rocks and sediment. Further down Vernon Creek large amounts of wood debris substantially blocked the creek, rerouting the waters over the Eldorado reservoir overflow spillway. This completely destroyed the spillway channel and also buried the overflow piping outlet structure in approximately 2 meters of gravel. In May of 2017, the creek was set back into its original flow channel and the Eldorado overflow spillway was restored. This work was completed as per Dobson Engineering Ltd. recommendations.

Left: Vernon Creek spillway during high flows. Right: Eldorado overflow outlet structure uncovered but still full of sediment.

Oyama Creek Intake

Oyama Creek intake was also filled with debris during this high flows flood event. Due to this, District staff constructed a temporary dam directly below the existing intake and diverted water into the headworks of the Oyama Creek water system. The make-shift dam was maintained throughout the summer, sufficiently meeting water demands of Oyama Creek customers. The Oyama Creek intake was cleaned out in November of 2017.

Left: Oyama Creek intake filled with debris. Right: High flows spilling over Oyama Creek intake.

Left: Construction of temporary dam directly below debris filled Oyama Creek intake. Right: Damage to the spillway caused by the extreme flows.

Intakes along Okanagan Lake

Okanagan Lake reached a record setting maximum level of 343.25 m, 77 cm above full pool. The District of Lake Country has three pump houses located on Okanagan Lake; Lake Pine pump house, Coral Beach pump house, and Okanagan Lake pump house, all of which were impacted by the flooding. Lake Pine and Coral Beach pump houses had sandbag dams built to protect the buildings. In front of the Okanagan Lake pump house soil erosion exposed foundation and other issues with breakwater wall. Immediate actions were erosion mitigation measures with large rip rap was used to re-armoured preventing further wave erosion under the structure.

Top left: Flood protection at Lake Pine pump house. Top right: Sandbag dam at Coral beach pump house.

Bottom: re-armouring the Okanagan Lake pump house.

Cross Connection Control Program (CCCP)

The Universal Metering program along with the installation of testable backflow prevention devices on seasonal irrigation connections reached completion in 2017. The majority of seasonal irrigation connections, primarily for agricultural use in the District, were inspected and fitted with the appropriate cross connection control device. Risks encountered with domestic services were also addressed at this time.

Dependent on the business type, any new business license issued by the District will be subject to an inquiry as to the use of water for that business. If warranted, a cross connection inspection will be completed.

Table 1. Status of cross connection control program noting the severity of hazards and the number of those

the	it were	surveyed	as	being	compli	ant.
	9			1251	15 10000 (1000)	

Hazards	Quantity	Not Surveyed	Surveyed	Vacant	Compliant
High	39	2	37	0	33
Medium	94	12	82	0	73
Low	89	12	77	0	65
Totals	222	26	196	0	171

Annual Operations Summary

Annual operational duties that are completed by District staff:

- Service installation and repairs
- Collection and analysis of water sampling
- Upland dam inspections
- Maintain and clean all reservoir, chlorination, and pumping facilities
- Water main flushing
- Air valve maintenance

- Pressure reducing valve maintenance
- Hydrant maintenance
- Line valve maintenance
- Main line leak repairs
- Seasonal irrigation turn on & off
- Respond to customer complaints and inquiries

2017 Operations Project Highlights

Universal Metering

The installation phase on the Universal Metering project continued from 2014 and reached 98% completion by the end of 2016. This project accounted for greater than 2000 residential meter installations and upgrades to over 800 existing metered accounts so they are compatible with the new reading system. It also encompasses the installation of agricultural water meters. The remaining agricultural installations were completed in early 2017.

In 2017 the District implemented a metered rate structure for all customers.

Left: High Volume Ultrasonic Meter and Backflow installed. Right: District installing a Meter and Backflow unit.

Neptune Meter contractor installing residential indoor meter (2015)

Dam and Reservoir Inspections

Weekly and daily inspections of Upland Dams (Beaver, Crooked, Oyama, and Damer) were completed by the District. All inspection reports outlined the conditions of the dams and reservoirs as well as any maintenance recommendations.

The provincial inspector, Mike Norsworthy, completed a dam audit on Beaver Lake.

2017 also included the cleaning and inspection of the Coral Beach reservoir. There were no issues noted.

Okanagan Centre Road East Service Renewal

From June to September 2017 District operations staff completed approximately 100 residential service line renewals along Okanagan Centre Road East. This work consisted of connecting new service lines to properties private water lines, removal of the old service lines, and removal of any unused irrigation standpipes fronting the property. Many of the old service lines were over 40 years old and found to be in a state of imminent failure.

Water operators working along Okanagan Centre Road East

Capital Works Improvements

The District of Lake Country continues to progress towards the goal of sustainable and affordable water following projects outlined in the <u>Water Master Plan</u>. Project 2 (Universal Metering) was completed in 2017. Project 3, regarding Lower Lakes Water Quality Improvements, was next to be completed but was delayed and replaced by Project 4, Eldorado Treated Water Reservoir. Project 4 is currently under construction with a completion date in the summer of 2018.

Due to the primary objective of supplying high quality water to domestic customers, the Eldorado Improvements took precedence over the Lower Lakes Improvements. The Eldorado reservoir is supplied with Vernon Creek water from the Beaver Lake source. This water source is susceptible to elevated turbidity and microbiological contamination, especially during freshet. The design of the Eldorado Treated Water Reservoir will increase treated water storage volumes and provide greater chlorine contact time for better disinfection.

Eldorado Treated Water Reservoir and Glenmore Booster Station Project

In 2017 the District began construction of the Eldorado Treated Water Reservoir and Glenmore Booster Station Project. This project consists of three new key infrastructure components.

6,000 Cubic Metre Concrete Reservoir

- Provides greater time for chlorine to react and disinfect water prior to entering the distribution system
- Provides greater storage for fire protection
- o Provides a clear water storage tank for future water treatment facility

Low Lift Pump Station

Conveys water from the raw water balancing reservoir to the treated water reservoir

Glenmore Booster Station

- o Replaces an existing undersized booster station
- o Interconnects the Beaver Lake water source and the Okanagan Lake water source, allowing District staff to use either source in both systems as needed

Treated reservoir construction at Eldorado

Camp Road Public Works Yard

Camp Road Public Works Yard was renovated in 2017 to include outside covered storage areas and three additional bays for extra shop space. The additional space was needed due to an increase in staff and equipment. The District of Lake Country's Water division and Roads division both share the Camp Road Public Works Yard. This upgrade was a vital addition and was necessary to create more organizational space.

Left: Camp Rd. Shop three bay addition. Right: Outside covered storage addition.

Emergency Response Plan

The DLC has developed an Emergency Response Plan (ERP) that is updated annually (or more often as required). This report is seperate from the Annual Water Operations Report. Both the ERP and Annual Water Operations Report are provided to IHA annually in June.

DISTRIBUTION WATER QUALITY

Water Chemistry background

This section provides a review of the water quality testing performed in 2017 for the District of Lake Country's (DLC) water sources. Overall bacteriological and water chemistry results show that the majority of samples meet the *Guidelines for Canadian Drinking Water Quality* (GCDWQ); however, some parameters exceeded the maximum acceptable concentrations. The District's two main upland drinking water reservoirs (Beaver and Oyama Lake) and their creek sources where our intakes are located (Vernon and Oyama Creek) exceeded the GCDWQ for colour and turbidity. Both Beaver and Oyama sources exceeded the THM guidelines. Such results are common throughout the Okanagan wherever water is sourced from highland watersheds.

Source water from these watersheds is high in organic matter which causes colour issues and elevated disinfectant by-products. Turbidity is naturally occurring in some areas and can be compounded by

Vernon Creek covered in snow.

human activities that occur above our intakes, such as recreation, cattle ranching and logging. 2017 was exceptional during the freshet flooding as major road washouts occurred on Beaver Lake Road and within old forestry cut blocks, all washing into Vernon creek and ultimately settling in our drinking water intake, Beaver Lake. The DLC is working towards treatment (as outlined in our <u>Water Master Plan</u>) and at present our primary form of disinfection is chlorination.

Water purveyors are responsible for providing potable water to their users under the <u>BC's Drinking Water Protection Act</u>. In November 2012 the Province released version 1.1 for Drinking Water Treatment Objective (microbiological) for surface water supplies in British Columbia (<u>BC Drinking water objectives</u>). The <u>BC Drinking water objectives</u> provide an overview of the *framework towards achieving goals for drinking water treatment of pathogens in surface water supply systems in BC and for a general reference for assessing progress towards updating or improving existing water supply systems. This general overview was developed using the <u>BC's Drinking Water Protection Act</u>, the <u>Drinking Water Protection Regulation</u>, and objectives in the <u>GCDWQ</u>. It will be used as a general reference for assessing progress towards updating or improving existing water supply systems. The treatment objectives ensure the provision of microbiologically-safe drinking water. It provides minimum performance target for water suppliers to treat water to produce microbiologically-safe drinking water addressing enteric viruses, pathogenic bacteria, Giardia cysts and Cryptosporidium oocysts. This continues to follow the 4-3-2-1-0 treatment objectives:*

- 4-log (99.99 percent) inactivation and/or removal of viruses,
- 3-log (99.9 percent) inactivation and/or removal of Giardia and Cryptosporidia,
- Two treatment processes for surface water
- Less than or equal to one nephelometric turbidity until (NTU) of turbidity
- No detectable E.coli, fecal coliform and total coliforms

Water Master Plan concept promotional marketing (above)

The District has addressed these concerns in our <u>Water Master Plan</u> and we remain in discussions with IHA regarding the implementation and challenges of meeting these requirements; further details page 13 Capital Works.

The DLC's distribution sites are monitored throughout the year for water chemistry (free and total chlorine, turbidity, temperature, pH and conductivity), and for the presence of bacteria (total coliforms and E.coli).

Chlorine is the disinfectant used for all of the District sources. Free and total chlorine are measured to ensure a residual is maintained throughout the distribution systems. The Kalamalka Lake source also utilizes ultraviolet water treatment radiation as a secondary form of disinfection. Ultraviolet operations log sheets are contained in Appendix H.

Turbidity (a measure of the amount of particulate matter suspended in water) can harbour microorganisms, protecting them from disinfection, therefore increasing the chlorine demand. In the Canadian Drinking Water Guideline (GCDWQ) the maximum allowable concentration for turbidity in water distribution systems has been set at 1 NTU.

Temperature and pH affect the strength of the disinfectant. The potable water temperature should be less than 15 $^{\circ}$ C for palatability and to inhibit growth of nuisance organisms. <u>GCDWQ</u> for pH ranges between 7.0 and 10.5.

Conductivity (the ability of an aqueous solution to carry an electrical current) is used as a quick indicator of changes occurring in the natural waters.

Colour creates high disinfectant demands and is an indicator of potential increased dissolved organic matter which, when combined with chlorine, forms disinfectant by-products. There is no GCDWQ for apparent colour however the aesthetic objective in the GCDWQ for true colour is <15 TCU.

The pH is the measure of acidity or basicity of an aqueous solution. It is an Aesthetic Objective (AO) now set at 7.0- 10.5 (prior to 2017 was 6.5-8.5). pH is important to maximize treatment effectiveness, control corrosion and reduce leaching from distribution system and plumbing components $\underline{\text{CDWQG}}$.

Bacteriological Background

The District of Lake Country (DLC) in cooperation with the Interior Health Authority, Okanagan Service Area (IHA) has developed a Water Quality Monitoring and Reporting Plan. It includes the criteria set by the Province to ensure standards for the monitoring the delivery of safe drinking water are being met. The bacteriological water quality monitoring requirements that DLC follows measure against the Guidelines for Canadian Drinking Water Quality (GCDWQ) and the Drinking Water Protection Act (DWPA) and Regulations (DWPR). Drinking water samples are collected on a weekly basis within each DLC Water System. Each water source is monitored for physical, chemical, and biological parameters. All membrane filtration microbiological samples are sent to an accredited and licensed laboratory for analysis. Additionally, samples are analyzed 'in-house' with Presence-Absence tests (P/A) for further measurement against the GCDWQ and for use in assessing trends, standards and emerging issues. The required numbers of monthly samples are detailed in the DWPR Schedule B (Table 2) and the District of Lake Country Water Quality and Monitoring Plan; Frequency of Monthly bacteriological tests (Table 3). All weekly Total coliform and E.coli results from raw water sources and throughout the distribution system (this includes both membrane filtration and Presence-Absence) are compiled and submitted to the Drinking Water Officer assigned to DLC, Coral Beach and Lake Pine water systems. Results that do not meet the water quality standards in the DWPR, Schedule A (Table 4) are immediately reported to the Drinking Water Officer.

Table 2: Schedule B - Frequency of Monitoring Samples for Prescribed Water Supply Systems (section 8).

Population Served by the Prescribed Water Supply System:	# Samples per month:
less than 5,000	4
5,000 to 90,000	1 per 1,000 of population
more than 90,000	90 plus 1 per 10,000 of population in excess of 90,000

Table 3: Frequency of Monthly bacteriological tests: Membrane Filtration (MF) and Presence-Absence (P/A)

System/Source	MF Distribution # samples required per mo.	MF Raw Water # samples recommended per mo.	P/A	Total MF Distribution and Raw	Distribution Bacteriological/ Chlorine test sites:
DLC Water System: Beaver Lake source: Est. Population 4,000	4	4	2	8	15*
DLC Water System: Okanagan Lake source : Est. Population: 4,000	4	4	2	8	11**
DLC Water System: Oyama Lake source: Est. Population 636	4	4	2	8	6
DLC Water System: Kalamalka Lake source: Est Population 614	4	4	2	8	5
Coral Beach Water System: Okanagan Lake source Est Population 124	4	4	2	8	2
Lake Pine Water System: Okanagan Lake source Est Population 173	4	4	2	8	4**

Table 4: Schedule A - Water Quality Standards for Potable Water (sections 2 and 9) DWPR

Parameter:	Standard:
Escherichia coli (<i>E.coli</i>)	No detectable Escherichia coli (<i>E.coli</i>) per 100 ml
Total coliform bacteria:	
(a) 1 sample in a 30 day period	No detectable total coliform bacteria per 100 ml
(b) more than 1 sample in a 30 day period	At least 90% of samples have no detectable total coliform bacteria per 100 ml and no sample has more than 10 total coliform bacteria per 100 ml

Coliform bacteria are naturally occurring in the environment and generally are not harmful. However, their presence is an indicator for the presence of other types of disease-causing organisms. The presence of these bacteria is a sign that there may be problems with the water treatment, or the water distribution system.

Escherichia coli, (E.coli) are a bacterium that is always present in the intestines of humans and other animals and whose presence in drinking water would indicate fecal contamination of the water. Most strains of E.coli do not cause illness in healthy humans, although some strains do cause cramps and diarrhea. One particular strain named O157:H7 produces a powerful toxin that can cause severe illness. The maximum acceptable concentration (MAC) of E.coli in public, semi-public, and private drinking water systems is zero detectable per 100 mL.

^{**}includes at least 2 reservoirs

At the time the samples are analyzed, the lab estimates the general bacterial population from background colony counts. Background bacteria are used as a general measure of the bacterial population present in a drinking water system or in the raw source water. Under ideal growth conditions, the background bacteria may increase and are indicators of the potential growth of coliforms. Initial counts are not reportable under our Permit to Operate. However, in order to identify problem areas and in aiming to provide good water quality within the distribution systems, all events are recorded and reported with follow-up sampling and, when necessary, flushing to provide fresh water to the site. In 2017 283 MF bacteriological samples were collected and analyzed at Caro Environmental Labs in Kelowna for total coliforms and E.coli. Additionally 158 P/A tests were analyzed (in-house). The P/A tests determine if total coliforms are present or absent from the sample but do not provide counts should the test be positive. P/A tests are collected on alternate weeks from the MF samples. The P/A tests provide quick feedback on the bacteriological quality of the water during the week that MF samples are not collected. Should a P/A be positive, additional bacteriological testing and further water chemistry testing occurs. At no time was E.coli detected in any DLC distribution systems.

In 2017 two samples were Positive for Total Coliforms. On the Coral Beach system at the Pumphouse one sample was returned with one total coliform and negative for Ecoli. On the Oyama Lake source one sample at the Easthill site was returned with one total coliform and negative for Ecoli. Following bacteriological samples were negative for total coliforms and E.coli. Appendix A contains a summary of positive total coliform results from each water system.

For all sources, any water chemistry parameters that are recorded daily through supervisory control and data acquisition (SCADA) and are not included in the data below. SCADA information is reported monthly to IHA in the web posted Monthly Water Quality reports. The monitoring of source and distribution water is conducted weekly, rotating sampling through all sites as set out in the District of Lake Country Water Quality Monitoring and Reporting Plan.

Distribution water quality results are in tables 5 -10 below for District of Lake Country Water System. The list of sample sites for each distribution system is located in Appendix B.

Beaver Lake Source

Table 5. 2017 Annual Distribution Water Chemistry Results: District of Lake Country Water System; Beaver Lake Source (All data reported from weekly water quality monitoring using hand-held equipment). It should be noted that occasionally the distribution water sampled is a mixture of both sources (Okanagan Lake mixed into Beaver distribution) and variation from the norm occurs within the data.

	Free	Total	Turbidity	Temp	рН	Conductivity
	Chlorine	Chlorine	NTU	°C		μS/cm
	mg/L	mg/L				
MIN	0.06	0.28	0.42	2	6.4	64
MAX	4.08	4.67	3.3	18	7.8	125
AVERAGE	2.30	2.52	0.95	12	6.9	82
WQ Guidelines				15	7.0-10.5	
			1 (max)			
Aesthetic			≤ 5 NTU			
objective (AO)	1		AO	AO	AO	

Water chemistry equipment (residual chlorine and turbidity meters) at Eldorado Balancing Reservoir

Okanagan Lake Source

Table 6. 2017 Annual Distribution Water Chemistry Results: District of Lake Country Water System; Okanagan Lake Source (All data reported from weekly water quality monitoring using hand-held equipment). It should be noted that there may be occasion where the distribution water sampled is a mixture of both sources (Okanagan Lake water mixed into Beaver distribution) and variation from the norm occurs within the data.

	Free	Total	Turbidity	Temp	рН	Conductivity
	Chlorine	Chlorine	NTU	°C		μS/cm
	mg/L	mg/L		COS. J		
MIN	0.03	0.17	0.21	4	7.4	214
MAX	2.15	2.70	3.00	19	8.7	370
AVERAGE	0.73	0.85	0.50	9	8.1	295
WQ Guidelines				15	7.0-10.5	
			1 (max)	, ,		
Aesthetic			≤ 5 NTU			
objective (AO)			AO	AO	AO	

Oyama Lake Source

Table 7. 2017 Annual Distribution Water Chemistry Results: District of Lake Country Water System; Oyama Lake Source (All data reported from weekly water quality monitoring using hand-held equipment). Occasionally the distribution water sampled is a mixture of both sources (Oyama Lake and Kalamalka Lake) and variation from the norm occurs within the data.

	Free	Total	Turbidity	Temp	рН	Conductivity
	Chlorine		NTU	°C		μS/cm
	mg/L	mg/L				
MIN	0.48	0.69	0.24	9	6.1	40
MAX	4.02	4.40	1.09	21	7.5	94
AVERAGE	2.57	2.79	0.51	15	6.5	58
WQ Guidelines				15	7.0-10.5	
			1 (max)			
Aesthetic	-		≤ 5 NTU			
objective (AO)			AO	AO	AO	

Kalamalka Lake Source

Table 8. 2017 Annual Distribution Water Chemistry Results: District of Lake Country Water System; Kalamalka Lake Source (All data reported from weekly water quality monitoring using hand-held equipment). Occasionally the distribution water sampled is a mixture of both sources (Oyama Lake and Kalamalka Lake) and variation from the norm occurs within the data (i.e. Kalamalka lake water in Oyama distribution lines).

	Free	Total	Turbidity	Temp	рН	Conductivity
	Chlorine mg/L	Chlorine mg/L	NTU	°C		μS/cm
MIN	0.20	0.33	0.25	3	7.3	240
MAX	2.96	3.02	2.1	17	8.6	414
AVERAGE	1.30	1.47	0.75	8	8.2	392
WQ Guidelines				15	7.0-10.5	
			1 (max)			
Aesthetic			≤ 5 NTU			
objective (AO)			AO	AO	AO	

Coral Beach Water System

Table 9. 2017 Annual Distribution Water Chemistry Results: Coral Beach Water System; Okanagan Lake Source (All data reported from weekly water quality monitoring using hand-held equipment).

	Free Chlorine mg/L	Total Chlorine mg/L	Turbidity NTU	Temp °C	рН	Conductivity _µ S/cm
MIN	0.24	0.40	0.24	1	7.4	280
MAX	3.30	3.46	5.00	15	8.4	759
AVERAGE	1.26	1.41	0.59	10	8.0	330
WQ Guidelines				15	7.0-10.5	
			1 (max)			
Aesthetic			≤ 5 NTU			
objective (AO)			AO	AO	AO	

Lake Pine Water System

Table 10. 2017 Annual Distribution Water Chemistry Results: Lake Pine Water System; Okanagan Lake Source (All data reported from weekly water quality monitoring using hand-held equipment).

				Temp	pH	Conductivity
	Chlorine mg/L	Chlorine mg/L	NTU	°C		μS/cm
MIN	0.13	0.23	0.21	1.0	7.8	277
MAX	3.48	3.80	0.89	16	8.2	399
AVERAGE	1.15	1.33	0.43	9	8.0	333
WQ Guidelines			_	15	7.0-10.5	
			1 (max)			
Aesthetic			≤ <i>5 NTU</i>			
objective (AO)			AO	AO	AO	

Distribution water quality can vary for numerous reasons. These include: seasonal changes to water demand, timing of sampling following system flushing or use of hydrant, or mixing of water sources. The last circumstance is only applicable to Beaver/Okanagan Lake customers and Oyama/Kalamalka Lake customers. Under normal operating procedures Beaver Lake and Okanagan Lake sources do not mix. However, should Beaver Lake source water experience an undesirable water quality event (i.e. high turbidity that occurs during freshet), and if the system demands are within an operational range, we will supplement or switch Beaver Lake source customers with Okanagan Lake water. For customers on the Oyama source this is now year four that Kalamalka Lake source has been the primary supply during the non-irrigation season (approximately October through May). At no time are the Beaver or Oyama sources mixed into Okanagan or Kalamalka source distribution systems. If this were ever to occur it would be under a water emergency situation with the appropriate Water Quality Advisory Notification issued.

It is not unusual in any of the distribution systems for free chlorine to read trace levels at dead ends or through low use areas. The Beaver, Okanagan and Lake Pine distributions all had samples of less than 0.20 ppm free chlorine. The free and total chlorine levels are closely monitored and if chlorine levels are low or turbidity is elevated, chlorine dosing may be increased and/or flushing of distribution lines may occur. Follow-up sampling confirms residuals and turbidity levels.

In 2017 the GCDWQ changed and the Aesthetic Objectives of pH were changed from 6.5-8.5 to 7.0-10.5. The Beaver and Oyama sources regularly did not meet these objectives whereas the deep water intakes on Okanagan and Kalamalka were generally within this range. Temperature on all systems fluctuates with weather and raw water conditions. All systems at some point had at least one sample that was at or above the aesthetic temperature guidelines. Overall averages on all systems were well under the 15 degrees guidelines.

Water Quality Advisory and Boil Water Notice

The following sources throughout 2017 were on a Water Quality Advisory (WQA):

- Beaver Lake (District of Lake Country Water System)
- Oyama Lake (District of Lake Country Water System)

The advisories on Beaver and Oyama Sources will remain in effect until infrastructure upgrades are made to improve water quality and reliability.

Notice to customers on the Oyama and Beaver sources as to when their water supplies will be switched over or supplemented with an alternate water source of better water quality does not occur. The DLC will

continue to supply customers with the best water quality possible and normal operations includes the switching and supplementation of alternate sources to optimize water quality. WQA Reminder notification are sent to customers on their water bills, it is permanently posted on our web and is publicized on various occasions in our local newspaper paper (the View) and DLC social media. In a situation where there is a lower water quality event, such as a Boil Water Notice, customers would be notified as per the IHA approved Potable Water Supply Emergency Response Plan for the DLC.

In June 2017, IHA <u>released a report</u> as part of public awareness campaign called *Drinking Water in Interior Health*. It is an <u>"Assessment of Drinking Water Systems, Risks to Public Health, and Recommendations for Improvement." (January 2017).</u> The Chief Medical Health officer, Dr. Corneil, advises that "This report should be viewed as an opportunity to renew and rejuvenate conversations between drinking water officers, water supply managers, municipal leaders, and members of the community," and is "An opportunity to ensure we are moving forward, together, towards a common goal: access to clean, safe, and reliable tap water for all people at all times."

For the DLC we will continue our communications with IHA as we work towards achieving goals in our <u>Water Master Plan</u> and look forward to learning more about IHA's public awareness campaign. Currently IHA has developed a series of <u>educational videos</u> providing information on how the water systems work, how water is treated, and what safety issues the community should be aware of.

As with the 2006 Turbidity Notification Campaign, IHA maintains the requirement of purveyors to issue a Water Quality Advisory when turbidity exceeds 1 NTU and to contact Interior Health as the turbidity approaches 5 NTU to discuss enhanced notification (i.e. a Boil Water Notice). Reminder notifications are sent to customers annually through water bill inserts as well as posted on the DLC web page and through our social media and local paper as required. Regardless whether a source is on an Advisory or not, the distribution systems on all sources are regularly monitored as per the IHA approved Water Quality Monitoring and Reporting Plan.

Service Disruptions

Under normal operating conditions many water utilities frequently experience minor disruptions due to various reasons such as repairs to leaks, water main breaks, seized valves or installation of new infrastructure. In 2017 water operations crew responded to approximately 9 service repairs and 4 water main breaks. No Boil Water Notices were issued in 2017.

Repairs in 2017 were completed with little disruption and as quickly as possible. Regular service was restored within the day and public health and safety was not compromised. In circumstances where public health and safety are at risk due an interruption in water distribution services, the District reports the event to Interior Health Authority (IHA) and it is documented in the Monthly Water Quality Reports under Notable Events.

With the exception of an emergency repair or break, customers are provided advanced notice. When this is not possible, customers in the affected area are advised and notifications are left on the doors of the residents.

Trihalomethanes (THM's)

Trihalomethanes (THM's) are a by-product of the water disinfection process. They form when natural organic matter (i.e. decaying vegetation commonly found in lakes and reservoirs) reacts with the chlorine used to treat the water. This reaction produces organic chlorites that include suspected carcinogenic "disinfection by-products," the most common of which are THM's.

The maximum acceptable concentration (MAC) for trihalomethanes (includes the total of chloroform, bromodichloromethane, dibromochloromethane and bromoform) in drinking water is 0.100 mg/L (100 μ g/L). This is based on a locational running annual average of a minimum of quarterly samples taken at the point in the distribution system with the highest potential THM levels. (GCDWQ)

2017 trihalomethane analysis in the DLC Water System showed Oyama and Beaver Lake sources had total THM averages that exceeding the Guidelines for Canadian Drinking Water Quality (GCDWQ). This may be due to the higher levels of organics in the upland lakes. All THM results displayed as a running average are detailed in Figures 2-7.

Figure 2. DLC Beaver lake source trihalomethane (THM) data collected 2002 – 2017. Average Total THM values relative to the Guidelines for Canadian Drinking Water Quality (GCDWQ). *2002 and 2003 data limited to one sample date.

Figure 3. DLC Oyama lake source trihalomethane (THM) data collected 2004 – 2017. Average Total THM values relative to the Guidelines for Canadian Drinking Water Quality (GCDWQ). Sampling of Oyama source occurs only during irrigation season (approximately May – October) due to Kalamalka source in distribution lines during non-irrigation season. *2016 and 2017 limited to one sample date.

Figure 4. DLC Kalamalka lake source trihalomethane (THM) data collected 2006 – 2017. Average Total THM values relative to the Guidelines for Canadian Drinking Water Quality (GCDWQ). Kalamalka sampling includes sites within Oyama distribution lines during non-irrigation season (approximately October – May).

Figure 5. DLC Okanagan lake source trihalomethane (THM) data collected 2006 – 2017. Average Total THM values relative to the Guidelines for Canadian Drinking Water Quality (GCDWQ).

Figure 6. DLC Coral Beach System (Okanagan lake source) trihalomethane (THM) data collected 2009 – 2017. Average Total THM values relative to the Guidelines for Canadian Drinking Water Quality (GCDWQ).

Figure 7. DLC Lake Pine System (Okanagan lake source) trihalomethane (THM) data collected 2012 – 2017. Average Total THM values relative to the Guidelines for Canadian Drinking Water Quality (GCDWQ).

Instrument Calibration and Quality Control

Prior to sampling, field instruments are checked against standards to ensure accuracy. All equipment is regularly maintained and calibrated as required prior to use in the field. Annually, a representative from Hach Services personally attends the DLC to inspect, recalibrate and re-certify water quality hand-held equipment. 2017 certification was obtained for all water quality monitoring field equipment. On-line Water Quality monitoring equipment is verified weekly using the hand-held water quality equipment, maintained, and calibrated as per manufacture directions and certified by an outside agency as scheduled in the automated operational maintenance program.

Giardia Performance Monitoring: CT calculations

Beaver Lake Source

Chlorine is the primary disinfectant used on the Beaver Lake source and in order to be effective, it must have adequate contact time (CT) with microorganism to inactivate them. Various factors can affect CT values, such as pH, temperature, strength of disinfectants and types of organisms. The CT table that the DLC uses was developed by IHA specifically for the Beaver Lake source at the Glenmore pressure reducing Station (PR6), with the assumption that we are aiming to inactivate both Giardia lamblia (a single-celled parasite that causes intestinal infection) and viruses. Therefore the objective of giardia performance monitoring is to achieve a 3 log inactivation of giardia which is 99.9% deactivation which also provides the required 4 log inactivation of viruses. This PR station on Seaton Road has been working relatively well for collecting CT data. However, due to confined space and inadequate set up within the PR station, this dedicated sample site was instead installed outside of the station and is subject to freezing in winter. For all occasions in 2017 when this site was sampled all CT requirements were achieved with 99.9% -100% deactivation. The CT spreadsheet is located in Appendix C.

Source Sampling (Raw Water)

Raw Water Sampling occurs at intakes, upland drinking water reservoirs, and at deep water intake pump stations.

Crooked Lake (left) Beaver Lake Dam (middle) and Vernon Creek (right)

At raw water intakes we analyze water quality parameters that will provide adequate measurement of chemical and physical water quality. These data is compared against the CDWG as per Conditions on Permit and recommendations in Oyama and Vernon Creek Watersheds Source Water Assessment. Annually, comprehensive tests are collected at all intakes and nutrient testing occurs as budget permits during high and low flow seasons or as required. The DLC continually modifies parameters sampled to provide sufficient baseline data for future water treatment.

Raw Water Data from intakes and pump stations are located in Tables 11 through 16 (below). Data is collected from each source from the following sites:

- Beaver Lake source: Vernon Creek Intake (Table 11)
- Okanagan Lake Source: Okanagan Lake Pump Station (Table 12)
- Oyama Lake source: Oyama Creek Intake (Table 13)
- Kalamalka Lake source: Kalamalka Pump Station (Table 14)
- Okanagan Lake Source: Coral Beach Pump House (Table 15)
- Okanagan Lake Source: Lake Pine Pump House (Table 16)

Oyama Lake Dam Spillway

Results are stored electronically and undergo verification prior to monthly and annual reporting to ensure quality controlled data. These data are used to characterize the quality of raw water intakes, monitor levels of physical, chemical and biological changes occurring in raw drinking water, establish trends in drinking water quality, identify and track the occurrence of concerns such as increased turbidity, positive bacteriological results or changes in nutrient loading. As well provide background data for future additional forms of disinfection and water treatment plant(s), assess and report on the state of the DLC's distribution and raw water quality.

On May 5th a washout occurred on Beaver Lake Road and within a previous forestry cut block, washing significant amounts of sediment and other debris into Vernon creek and ultimately our community's water intake. This drinking water source was immediately switched off preventing high turbidity water (>1000NTU) from entering into the Eldorado reservoir. The Vernon Creek intake was completely off-line to assess damage from sediment, large debris and other potential impacts on infrastructure. When this event occurred the Eldorado reservoir was full. Once the reservoir level was substantially reduced, the Okanagan water source was then utilized to supplement during this period. The Beaver Lake source was back in commission mid-month with limited but functioning ability to provide water again to our customers. At the end of May, full Beaver lake water source was again in the distribution lines. At no time did our customers receive high turbidity water.

Pictures of Beaver Lake Road washout during the 2017 flood event.

Vernon creek intake: May 2016 (left) and May 2017 (right)

Table 11. District of Lake Country Water System, 2017 Raw Water, Beaver Lake Source: Vernon Creek Intake/Eldorado Reservoir. (All data reported from weekly water quality monitoring using hand-held equipment.)

w eekly sampling and on-line w ater quality eqiupment verification	¹ Hardness mg/L as CaCO3	² Turbidity NTU	Temp °C	рН	Cond μS/cm	TRUE color TCU	MF TOTAL CFU/100 ml	MF E.Coli CFU/100 mI	³ % of samples less than 10 Ecoli/100mL (N=52)
MIN	40	0.35	4	6.0	58	11	≥4	<1	
MAX	100	3.80	18	8.0	145	68	600	26	98%
AVERAGE	71	0.92	12	7.5	79	32	46 samples		
WQ Guidelines			15	7.0-10.5			<1	<1	
Aesthetic objective (AO) Maximum Allowable Concentation (MAC)	acceptable	<i>1 (max)</i> ≤ 5 NTU AO	AO	AO		AO	MAC	MAC	

¹ According to the criteria set out by the Guidelines for Canadian Drinking Water Quality (GCDWQ) the degree of hardness of drinking water may be classified in terms of ts calcium carbonate concentration as follows: soft, 0 to <60 mg/L; medium hard, 60 to <120 mg/L; hard, 120 to < 180 mg/L; and very hard, 180 mg/L and above

In 2017, the DLC continued to respond and investigate complaints of unsanctioned off road activities in high vulnerability areas directly along creeks and Beaver Lake Road, below our drinking water reservoirs. above intakes. In addition to the flooding event above, these areas appear to have a cumulative impact, from sources of sediment, on the elevated turbidity in our drinking water source.

If you notice questionable activities in our Community Watersheds report the incident to:

1-844-676-8477.

In 2017 the upland source flooding also filled Okanagan and Kalamalka lakes as they surpassed full pool and peaked the second weekend of June. Sandbags, gabion cages, tiger dams and temporary rip rap were built around critical areas such as our intake buildings in protection efforts against high water levels and pounding wave action. All structures stayed in place for June and remained in place until the RDCO Emergency Operations Centre confirmed they were safe to remove. The removal of these structures was completed by August 11th when the Local State of Emergency was not renewed.

At times through the flooding period, surface waters were quite murky with large amounts of floating debris (trees, pieces of docks, and barrels). Throughout this period the deep water intakes on Okanagan and Kalamalka lakes remained in good water quality with stable turbidity and normal (low) E.coli counts. Following the contracted barge works to re-armour (rip rap protection) at the Okanagan Lake pump house, it was determined that the intake pipe had been punctured and required immediate repair. At all times

² Turbidity is reported as weekly equipment verification and not SCADA

³ According to the criteria set out by the BC Water Quality Guidelines (BCWCG) for a system using disinfection only to treat drinking water, "90% of samples should have less than 10 E.coli per 100mL" (BCWQG (Criteria) 2006). Results are % of samples less than 10 E.coli/100mL

during this period, adequate disinfection was in place and no bacterial counts or high turbidity occurred in the distribution system.

Table 12. District of Lake Country Water System, 2017 Raw Water, Okanagan Lake Source: Okanagan Lake Intake. (All data reported from weekly verification of on-line monitoring equipment using hand-held water quality equipment.)

w eekly sampling and on-line w ater quality eqiupment verification	¹ Hardness mg/L as CaCO3	² Turbidity NTU	Temp °C	рН	Cond µS/cm	TRUE color TCU	MF TOTAL CFU/100 ml	MF E.Coli CFU/100 ml	UVTransmittance @ 254 nm unflitered	³ % of samples less than 10 E.coli/100mL (N=34)
MIN	120	0.21	4	7.8	258	<5	<1	<1	86	
MAX	180	0.92	9	8.3	294	9	25	11	88	100%
AVERAGE	156	0.42	6	8.1	271	<5	34 SAMPLES		87	
WQ Guidelines			15	7.0-10.5			<1	<1		
Aesthetic objective (AO) Maximum Allowable Concentation (MAC)	acceptable	1 (max) ≤ 5 NTU AO	AO	AO		AO	MAC	MAC		

¹ According to the criteria set out by the Guidelines for Canadian Drinking Water Quality (GCDWQ) the degree of hardness of drinking water may be classified in terms of ts calcium carbonate concentration as follows: soft, 0 to <60 mg/L; medium hard, 60 to <120 mg/L; hard, 120 to < 180 mg/L; and very hard, 180 mg/L and above

On May 5th the intense storm event also washed large rocks and woody debris into the Oyama Creek Intake. This system, however, was off line as Kalamalka was the primary water source at this time. As such, there was no interruption to service for this system.

Oyama Creek Intake filled with debris.

Emergency Operations Centre for the Regional District of the Central Okanagan was activated on May 6th and by Monday May 8th the District of Lake Country declared a Local State of Emergency to address local flooding. Throughout this month the DLC's infrastructure, including upland and deep-water intake buildings, were monitored and flood preventions measures where implemented at critical locations.

² Turbidity is reported as weekly equipment verification and not SCADA.

³ According to the criteria set out by the BC Water Quality Guidelines (BCWCG) for a system using disinfection only to treat drinking water, "90% of samples should have less than 10 E.coli per 100mL" (BCWQG (Criteria) 2006). Results are % of samples less than 10 E.coli/100mL

Table 13. District of Lake Country Water System, 2017 Raw Water Oyama Creek Intake. (All data reported from weekly verification of on-line monitoring equipment using hand-held water quality equipment.)

w eekly sampling and on-line w ater quality eqiupment verification	¹ Hardness mg/L as CaCO3	² Turbidity NTU	Temp °C	рН	Cond μS/cm	TRUE color TCU	MF TOTAL CFU/100 ml	MF E.Coli CFU/100 ml	³ % of samples less than 10 Ecoli/100mL (N=23)
MIN	40	0.27	6.2	7.26	45	5	14	<1	
MAX	60	0.84	18	8.0	63	80	700	270	69%
AVERAGE	43	0.49	13	7.5	50	43	23 samples		
WQ Guidelines			15	7.0-10.5			<1	<1	
Aesthetic objective (AO) Maximum Allowable Concentation (MAC)	acceptable	<i>1 (max)</i> ≤ 5 NTU AO	AO	AO		AO	MAC	MAC	

¹ According to the criteria set out by the Guidelines for Canadian Drinking Water Quality (GCDWQ) the degree of hardness of drinking water may be classified in terms of ts calcium carbonate concentration as follows: soft, 0 to <60 mg/L; medium hard, 60 to <120 mg/L; hard, 120 to < 180 mg/L; and very hard, 180 mg/L and above

On Monday May 8th it was reported that a slide event into the South East Bay of Kalamalka Lake had occurred following the freshet/storm event from the 5th. The DLC hired an aquatic biologist to collect samples and assess the potential for impact to our drinking water intake on that source. The results showed that plume's turbidity was just over 12 NTU and the bacteria counts were quite low with the highest at 9 CFU/100mL of *E.coli*. Ongoing monitoring of this site and at our intake continued throughout the month.

Slide site and Kalamalka Lake shown from drone following May 5th Storm. (Larratt Aquatic Consulting Ltd.)

² Turbidity is reported as weekly equipment verification and not SCADA

³ According to the criteria set out by the BC Water Quality Guidelines (BCWCG) for a system using disinfection only to treat drinking water, "90% of samples should have less than 10 E.coli per 100mL" (BCWQG (Criteria) 2006). Results are % of samples less than 10 E.coli/100mL

Table 14. District of Lake Country Water System, 2017 Raw Water Kalamalka Lake Intake. (All data reported from weekly verification of on-line monitoring equipment using hand-held water quality equipment.)

w eekly sampling and on-line water quality eqiupment verification	¹ Hardness mg/L as CaCO3	² Turbidity NTU	Temp °C	Нα	Cond µS/cm	TRUE color TCU	MF TOTAL CFU/100 ml	MF E.Coli CFU/100 ml	@ 254 nm	³ % of samples less than 10 E.coli/100mL (N=49)
MIN	180	0.30	4	7.9	370	<5	<1	<1	88	
MAX	220	1.51	11	8.5	397	<5	38	19	91	98%
AVERAGE	200	0.68	7	8.2	384	<5	49 Sa	mples	90	
WQ Guidelines			15	7.0-10.5			<1	<1		
Aesthetic objective (AO) Maximum Allowable Concentation (MAC)	acceptable	<i>1 (max)</i> ≤ 5 NTU AO	AO	AO		AO	MAC	MAC		

¹ According to the criteria set out by the Guidelines for Canadian Drinking Water Quality (GCDWQ) the degree of hardness of drinking water may be classified in terms of ts calcium carbonate concentration as follows: soft, 0 to <60 mg/L; medium hard, 60 to <120 mg/L; hard, 120 to < 180 mg/L; and very hard, 180 mg/L and above

Table 15. Coral Beach Water System, 2017 Raw Water Coral Beach Intake (Okanagan Lake source). (All data reported from weekly verification of on-line monitoring equipment using hand-held water quality equipment.)

weekly sampling and on-line water quality eqiupment verification	¹ Hardness mg/L as CaCO3	² Turbidity NTU	Temp °C	рН	Cond μS/cm	TRUE color TCU	MF TOTAL CFU/100 ml	MF E.Coli CFU/100 ml	UVTransmittance @ 254 nm unflitered	³ % of samples less than 10 E.coli/100mL (N=35)
MIN	140	0.23	7	7.8	260	<5	<1	<1	81	
MAX	160	5.20	17	8.4	275	5	4	<1	87	100%
AVERAGE	148	0.58	11	8.1	267	<5	35 Samples		85	P. I
WQ Guidelines			15	7.0-10.5			<1	<1		
Aesthetic objective (AO) Maximum Allowable Concentation (MAC)	acceptable	<i>1 (max)</i> ≤ 5 NTU AO	AO	AO		AO	MAC	MAC		

¹ According to the criteria set out by the Guidelines for Canadian Drinking Water Quality (GCDWQ) the degree of hardness of drinking water may be classified in terms of ts calcium carbonate concentration as follows: soft, 0 to <60 mg/L; medium hard, 60 to <120 mg/L; hard, 120 to < 180 mg/L; and very hard, 180 mg/L and above

The Coral Beach pump house was protected as best as possible, however, the dedicated water quality raw water sampling pump was damaged and determined dangerous to utilize; no raw water sampling occurred early June through mid-August. The pump could not be replaced until the static ground water and Lake Levels substantially decreased and the building floor remained dry.

² Turbidity is reported as weekly equipment verification and not SCADA.

³ According to the criteria set out by the BC Water Quality Guidelines (BCWCG) for a system using disinfection only to treat drinking water, "90% of samples should have less than 10 E.coli/100mL

² Turbidity is reported as weekly equipment verification and not SCADA.

³ According to the criteria set out by the BC Water Quality Guidelines (BCWCG) for a system using disinfection only to treat drinking water, "90% of samples should have less than 10 E.coli per 100mL" (BCWQG (Criteria) 2006). Results are % of samples less than 10 E.coli/100mL

The local state of Emergency for the DLC (and other local governments within the Regional District of Central Okanagan (RDCO)) remained in place through August 11th. In July, the main stem Lakes, Okanagan and Kalamalka were back to full pool mid-month however, with high water levels and potential damage from gusting winds and pounding wave action, protection measures at critical sites had remained in place until the month end. Through this period, the deep water intakes on Okanagan and Kalamalka lakes experienced a slight turbidity increase; however, they remained under the advisory limit and in good water quality standing. Barge companies continued through August removing debris washed onto DLC shores and as of the end of August have completed this major undertaking. DLC properties including intakes and other water associated infrastructure underwent assessment and were dealt with through the Provincial Response and Recovery Program.

Lake Pine pumphouse

Wave action impacts along Okanagan Lake

Table 16. Lake Pine Water System, 2016 Raw Water Lake Pine Intake (Okanagan Lake source). (All data reported from weekly verification of on-line monitoring equipment using hand-held water quality equipment.)

			9 1		9				
¹ Hardness	² Turbidity	Temp	pН	Cond	TRUE	MF	MF		3 % of samples
mg/L as	NTU	°C		μS/cm	color	TOTAL	E.Coli	UVTransmittance	less than 10
Ca CO3					TCU	CFU/100 ml	CFU/100 ml	@ 254 nm unflitered	E.coli/100mL (N=50)
140	0.23	7	7.8	210	<5	<1	<1	84	
160	0.90	15	8.3	337	6	≥17	1	88	100%
145	0.45	11	8.0	278	<5	50 Sa	mples	86	
		15	7.0-10.5			<1	<1		
accentable	1 (max) ≤ 5 NTU	40	40		40	MAC	MAC		
	mg/L as CaCO3 140 160	mg/L as NTU CaCO3 140 0.23 160 0.90 145 0.45 1 (max) ≤ 5 NTU	mg/L as NTU °C CaCO3 140 0.23 7 160 0.90 15 145 0.45 11 15 1 (max) ≤ 5 NTU	¹Hardness mg/L as ² Turbidity NTU Temp oC pH CaCO3	¹Hardness mg/L as ² Turbidity NTU Tem p °C pH μS/cm CaCO3 °C 2 Turbidity μS/cm 140 0.23 7 7.8 210 160 0.90 15 8.3 337 145 0.45 11 8.0 278 15 7.0-10.5 1 (max) ≤ 5 NTU ≤ 5 NTU	¹Hardness mg/L as ² Turbidity mg/L as Tem p oC pH μS/cm Cond μS/cm TRUE color 140 0.23 7 7.8 210 <5	1 Hardness mg/L as 2 Turbidity NTU Tem p oC pH μS/cm Cond μS/cm TRUE color MF TOTAL Lac C03 TCU CFU/100 ml CFU/100 ml 0.23 7 7.8 210 <5	1 Hardness mg/L as 2 Turbidity NTU Temp oc pH μS/cm Cond μS/cm TRUE color color MF TOTAL TOTAL MF EColi 2 CaCO3 2 Turbidity mg/L as 2 TCU CFU/100 ml CFU/100 ml CFU/100 ml CFU/100 ml CFU/100 ml CFU/100 ml 2 Cfu/100	1 Hardness mg/L as mg/L as 2 Turbidity NTU Temp oc pH Cond µS/cm TRUE color color MF TOTAL TOTAL MF ECOli ECOli (@ 254 nm unflittered) 140 0.23 7 7.8 210 <5

¹ According to the criteria set out by the Guidelines for Canadian Drinking Water Quality (GCDWQ) the degree of hardness of drinking water may be classified in terms of ts calcium carbonate concentration as follows: soft, 0 to <60 mg/L; medium hard, 60 to <120 mg/L; hard, 120 to < 180 mg/L; and very hard, 180 mg/L and above

² Turbidity is reported as weekly equipment verification and not SCADA

³ According to the criteria set out by the BC Water Quality Guidelines (BCWCG) for a system using disinfection only to treat drinking water, "90% of samples should have less than 10 E.coli per 100mL" (BCWQG (Criteria) 2006). Results are % of samples less than 10 E.coli/100mL

Raw Water Reservoirs/Intakes

The District draws water from four main primary drinking water reservoirs:

- 1. Beaver Lake (Crooked Lake chain flows into Beaver Lake) Upland source with a downstream intake on Vernon Creek.
- 2. Oyama Lake (Damer Lake flows into Oyama Creek) Upland source with a downstream intake on Oyama creek
- 3. Okanagan Lake (3) deep water intake
- 4. Kalamalka Lake (1) deep water intake

The Oyama and Vernon Creek watersheds together encompass approximately 141.1 km2. Together, the two community watersheds supply the DLC with approximately 65% of their source water. Both watersheds are dependent on upland storage reservoirs that rely on snow pack for annual water regeneration and supply needs.

The DLC draws water from intakes both on Vernon and Oyama Creeks. In addition to monitoring and sampling at these intakes, the DLC also analyzes raw water from our upland drinking water reservoirs. These reservoirs have samples collected for other water quality parameters that would provide adequate measurement of chemical and physical water quality against the CDWG as per Conditions on Permit and recommendations in 2010 Oyama and Vernon Creek Source Water Assessment. Comprehensive reports (parameters tested at the drinking water intakes) are located in Appendix D and the result for nutrient sampling (upland drinking water reservoirs (Beaver and Oyama)) is contained in Appendix E

The District's two main upland drinking water reservoirs (Beaver and Oyama Lakes) and creek sources (Vernon and Oyama Creeks) exceeded the <u>GCDWQ</u> for colour and turbidity. Such results are common throughout the Okanagan wherever water is sourced from highland watersheds.

Source water from these watersheds is high in organic matter which causes colour issues and elevated disinfectant by-products. Turbidity is naturally occurring in some areas and can be compounded by human activities that occur above our intakes, such as recreation, cattle ranching and logging.

The water quality monitoring of these reservoirs may increase or decrease in response to varying water quality conditions and to provide adequate baseline data for future water treatment. Results are stored

electronically and undergo verification prior to monthly and annual reporting to ensure quality controlled data. The data is used to characterize the raw water quality from our upland drinking water reservoirs, monitor levels of physical, chemical and biological changes occurring in raw drinking water, establish trends in drinking water quality, identify and track the occurrence of concerns such as increased turbidity, positive bacteriological results or changes in nutrient loading, provide background data for future additional forms of disinfection and water treatment plant(s) and to assess and report on the state of the DLC's distribution and raw water quality.

Algal blooms and other aquatic growth in our drinking water reservoirs can occur at various times throughout the year. Aquatic anomalies are assessed, under the direction of an aquatic biologist; samples are collected and sent for analysis.

The Eldorado balancing reservoir is monitored regularly and operations staff continues with on-going measures to control aquatic organism growth which includes the operation of the water as a balancing reservoir and the periodic removal of accumulated sediments. In 2016 this worked well and there were no major events that required additional control measures. There were no observed algae incidents on Oyama Lake or Oyama Creek.

Since 1998, when a taste and odour complaint occurred on Kalamalka Lake, the DLC, Greater Vernon Water/North Okanagan Regional District and the Ministry of Environment have partnered to acquire water quality data on this source. The information obtained defines the physical and biological impact at the DLC'S existing intakes; accumulates baseline water chemistry for future additional water treatment; provides information on the ideal depth of intakes for the best water quality; shows fluctuations in nutrients and algae production; and the implications of changes for water resources. This research is evaluated and re-directed on an annual basis.

In July Kalamalka Lake began to Marl and although it was less intense than previous years, the beautiful blue and turquoise green colours (picture above submitted as Jewels of Lake Country through DLC photo contest, V.Gouliquer) were still present. With this crystallization of calcium carbonate we also see a slight increase with this inorganic turbidity source. With very low bacterial counts and our chlorine maintained at adequate levels this did not cause additional problems other than regular cleaning and maintenance of

equipment at our chlorination/UV facility. IHA was aware of this increased turbidity trending and has advised that a water quality advisory was not required.

Watershed Management

The DLC supplies domestic and irrigation water for the communities of Oyama, Winfield, Okanagan Centre, and Carr's Landing. Sixty five (65%) percent of the water delivered to the Lake Country communities originates from the Oyama and Vernon Creek watersheds.

Infrastructure within these watersheds was constructed approximately 100 years ago for irrigation, but in the 1970's the systems were updated, and evolved to become a major domestic water supply. As the service population continues to expand, there has been a significant increase on the demands of these watersheds. Both the Oyama and Vernon Creek watersheds are multi-use and have numerous ongoing activities (e.g. forestry, range, recreation, etc.). Under the BC Government's Action Plan for Safe Drinking Water, the primary responsibility for protecting drinking water from land-use activities lies with the agency responsible for approving those activities. This can create complex governance that makes addressing source water concerns a significant challenge.

In 2010 the DLC secured an Okanagan Basin Water Board Water Quality and Conservation Grant that provided us with the substantial financial support to complete Watershed Source Water Assessment Plans. The DLC meets annually with stakeholders to review the plan, the intentions and recommendations/action items that were completed and other actions that have occurred or are required. The DLC also continues to collaborate with stakeholders (Forestry, Ranchers etc.) on other various occasions throughout the year to address matters as they arise. In 2015, the DLC fulfilled the second watershed related requirement of condition on permit to produce an implementation plan.

Watershed Source Water Assessment Plans:

2010 Oyama and Vernon Creek Source Water Assessment (Watershed Protection Plan)]

2010 Source to Tap Assessment South Kalamalka Lake Intake (DLC water system)

2010 Source to Tap Assessment of the Okanagan lake Intake (DLC water system)

2015 <u>Source Water Assessment and implementation Plan:</u>
Oyama and Vernon Creek

Damer Lake (above).

The purpose of the Source to Tap Assessments on the DLC distribution systems Kalamalka and Okanagan Lake sources were to conduct research and compile known data for use in identifying the DLC'S intake strengths, liabilities and planning for water quality protection and improvement. One of the most important recommendations in these assessments was the identification of an Intake Protection Zone.

This zone defines the area where the intake should take precedence over every other use of consideration. It also defines the areas of land and water where special care must be taken in the use and handling of potential contaminants to prevent them from accidently entering the lake and affecting the intake.

The Watershed Protection plan for the Oyama and Vernon Creek watersheds promotes sustainable management of our ecosystems through collaborative efforts of all stakeholders. The most valuable management tool from this plan is the identification of the various vulnerability zones that indicate the potential for risk to water quality. When considering any high risk activities within our community watershed, these high risk areas are the first to be evaluated for potential impacts of the activities along with the associated levels of risk. These activities may include forestry management, sports and/or recreational and mining activities.

Throughout the process of completing these plans, stakeholder involvement was a key component to ensuring a broad range of aspects were considered. The goal for stakeholders is to be aware of the vulnerability zones and to recognize the recommendations specific to them when planning further watershed activities.

The Oyama and Vernon Creek Source Water Assessment (SWA) was completed in 2010 as a condition on permit and prepared by Ecoscape Environmental Consultants Ltd. with input from all stakeholders.

Follow up meetings are for stakeholders to share their past accomplishments and current activities in the watershed. Overall, there is an appreciation and recognition our watersheds are multipurpose and it takes and overall effort to help protect the water while also sustainably maintaining resources for all users. Stakeholders are encouraged to bring forward their questions with an understanding that we want to maintain trust in this environment. As we continue to understand more of each stakeholder's processes and various regulations involved in their activities, recommendations can more often be dealt with through collaborative efforts. We recognize water is vitally important; however, we are all impacting the watershed regardless of what our activities are, we all have rights to be in the watersheds and we all have room for improvement.

The Source Water Assessment continues to play an important role in the management and planning in our community watersheds. In 2017 a specific stakeholder meeting to follow up on identified risks and actions in the SWA was not held. However, throughout 2017 there were various meetings (and continuous communications) either on a one-to one basis or in group settings with the Ministry of Agriculture, Ministry of Forest Lands and Natural Resource Operations, forestry licensees, range tenure holders, private lease lot cabin and resort owners, Okanagan Basin Water Board, Central Okanagan Regional District and the Ministry of Transportation and Infrastructure are among some of the parties the DLC worked with in 2016 respecting watershed activities. DLC staff also maintain other connections through involvement with several of the above-mentioned in various watershed related organizations some of which are the Okanagan Basin Water Board (OBWB), Okanagan Water Stewardship Council, BC Water Supply Association, Public Advisory Group for Sustainable Forest Management, OBWB and source protection and wetland committee.

In 2018 scheduled meetings will again commence as major licencees in our watershed have opted out of public advisory group planning and the DLC is no longer a participant in their sustainable forest management process. We continue to improve our collaboration with the SWA stakeholders group, striving to implement recommendations and recognizing improvements as we move forward. Our watersheds are multipurpose, multijurisdictional and cumulatively all activities are making an impact. All stakeholders have a responsibility to recognize this and use best practices maintaining sustainable resources for all users.

The DLC continued the joint work with Greater Vernon Water/North Okanagan Regional District (RDNO) and the Ministry of Environment to acquire water quality data on Kalamalka Lake. Data collected from 2017 sampling season was compiled and updated into the Kalamalka Lake Water Quality Study, Microflora, Water Chemistry & Thermal Profiles Report. The 2017 sampling season began in May during flooding and continued monthly into the fall; this marks the 19th year of collaboration on this comprehensive study.

In October, the DLC attended RDNO'S stakeholder technical advisory committee meeting to participate in addressing all risk management actions for site specific contaminants detailed in the SWA. One aspect of this meeting focused on the Kalamalka and Wood Lake Boat Impact Study (March 2017).

In June 2017, DLC council officially received this study and it was that this report be referred to staff to work on an implementation committee to devise implementation strategies and public consultation initiatives to review the recommendations of the report.

Under this direction, DLC staff (Strategic & Support Services Manager and Water Quality Technician) will be collaborating with the RDNO, District of Coldstream and RDCO with an initial step of further public engagement. Anticipated funding for this is expected to be attained through an OBWB grant; this to be further discussed and grant application submitted in 2018.

It is anticipated that this report will be a major driver in our drafting water protection as we also work towards Council's directive to furt a comprehensive source water protection plan for Kalamalka Lake a implementation plan.

or source and to craft ncluding an

Range Management

The Okanagan Shuswap District Range Program's annual meeting took place in the spring at the District of Lake Country. The 2017 range summary and 2018 planning meeting was smaller than the previous years with only the RDNO and the DLC watersheds: Duteau, Oyama and Beaver. This setting works much better for individual discussions and specific updates with range use permit holders in our community watersheds. Outside of this meeting, the DLC connects with ranchers (and others) throughout the year working to maintain open lines of communication with updates on projects, opportunities or situations that either party should be aware of.

Overall, the discussions this year focused on collaboration among local gov't, ranchers, Ministries within FLNRO), BMP's, research projects, debris stream protection, Intention paper for livestock watering regulations under the Water Sustainability Act, watershed fire risk planning and Recreational development. Again during 2017 the concern remained of the impact for (non-sanctioned and unknown but authorized) recreational activities in our watershed and forestry development.

All major licencees and the SSSP have agreed to use the DLC vulnerability zone mapping in their planning and development process.

Shown left is the Oyama Creek Vulnerability zone map.

DLC staff also actively participated and presented at various educational workshops for range, water stewardship, watershed protection and forestry planning committees throughout 2017. These presentations, workshops and associations are important for conveying and gaining further understanding the complexity of integrated watershed land use. Science based research and collaborative partnerships have been the key to identifying and developing solutions for resolving water quality and quantity issues.

Forestry

Harvest activities in our community watershed continued in 2017. There are two major licencees in our watersheds: Tolko and BC Timber Sales, both of which had harvest operations in 2017. The DLC makes an ongoing effort to maintain communications through staff involvement with the Sustainable Forest Management Plans (SFMP) Public Advisory Group and direct contact as necessary. However, as mentioned under the watershed section, both Tolko and BCTS have opted out of public advisory group planning. Both Tolko and BCTS are now obtaining their certification through the Sustainable Forestry Initiative (SFI) that is not open to public input or consultation in the development and reporting of targets and indicators in the open consultation process as the DLC had previously participated in with the SFMP.

Major Licencees in our community watersheds are well aware of our Watershed Protection Plan and the DLC has requested it be used as a planning tool when developing harvest plans. Harvest/site plans are reviewed by DLC staff and recommendations are provided as needed to address issues such as access (cattle and unsanctioned motorized vehicle activities), wild fire management, drainage concerns, and rehabilitation of roads to decrease the amount of non-status roads accumulating in our community watersheds.

Small Scale Salvage is a program that is regulated and operates through the Province. Private companies can apply for a small scale salvage licencee through the Ministry of Forest Lands and Natural Resources (MFLNR) These smaller operations apply to the MFLNR, harvest small volumes of timber that would otherwise not have been harvested and/or to address forest health objectives. Small scale salvage operations do not follow Forest Stewardship Plans (FSP) or belong to a certification process such as the SFMP or SFI. These FSP plans are to include a set of values/principles, objectives, indicators and target/performance measures that promotes sustainable forestry practices through addressing environmental, economic and social aspects of forest management. Major Licencees aquire certification to show they are sustainably managing their forestry activities and products. It is the responsibility of the small scale salvage operator and the Province to ensure that best management practices are being followed. The DLC as requested to be given the opportunity to provide comments and recommendations on our two major licencees FSP's so that high vulnerabilities, risks and other important concerns in protecting water quality and quantity are addressed. However, in 2017 Tolko did not advise of when they posted their FSP for public input and we were unaware of this until after the public comment period was closed.

As with major licencees, when small scale salvage operations occur in DLC'S watersheds, DLC staff review the referral for comment/recommendations and remind or provide the applicant a copy of our Watershed Protection Plan highlighting the importance of recognizing our vulnerability zones and properly planning and working within these zones. The DLC's highest concerns are within high vulnerability zones regardless of type of the proposed activity. The DLC continues to express concern with the Province authorizing approval for small scale salvage logging in high vulnerability zones (commonly within a major licensee's Lakeshore protection).

The Okanagan Shuswap District advises they will not regularly track ECA (equivalent Clear Cut Area) and rely on the comments from Major Licensee's to identify related issues in their feedback. The ECA not only can impact water quality but importantly it can influence water quantity (timing and volume). The DLC will

continue requesting updates and address this information gap in our watershed implementation plans as the cumulative hydrometric impacts were apparent in the 2017 flooding.

In 2017 Tolko proposed logging along Beaver Lake Road and near the Beaver Lake dam. Prior to logging the DLC, Ranchers, (FLNRO – Range) and Beaver Lodge were in various discussions' and block-walks to make Tolko aware of the water quality, quantity, access and other concerns with harvesting in this area through their referral process. The DLC made requests for special consideration in the areas of access management into the high vulnerability areas off Beaver Lake Road, restricted motorized vehicle access from the campground, cattle management areas, road deactivations and rehabilitation all to reduce cumulative impact sources of sediment that contribute to high turbidly in our drinking water source.

Other blocks discussed this month but not up for harvest until 2018 are LL1251, LL1252, and LL1253 – Located along Beaver Lake road. Block walks and recommendations for risk to water quality, quantity and access have been completed. DLC concerns focused on culverts and drainage especially following the flooding and road wash outs during freshet.

Of primary concern to the DLC are blocks above the Vernon Creek Intake's community water supply. The DLC hired a specialized hydrologist with forestry expertise to specifically address our apprehension with these sites. Concerns were with the Lincenee's Terrain assessment, the steep slopes above the community's drinking water intake and that DLC's specific water management prescriptions were being addressed in Tolko's plans. Tolko is fully aware of this high vulnerability area and sensitivities of this block; they are committed to continue discussions and a further block walk in 2018 will take place.

Appendices

Appendix A – Summary of Positive Bacteriological Results in Distribution

	Total coliforms CFU/100 mL		Presence Absence (total coliforms)	Absence (E.coli)	Sample date	Number of TC/E.coli Samples	Number of P/A samples
District of Lake Country Water System:							
Beaver Lake Source (WQA)	none	detected in	distribution	system		47	24
Okanagan Lake Source	none	detected in	distribution	system		63	44
Oyama Lake Source (WQA)						23	11
Easthill	1	<1			8/Aug/17		
Kalamalka Lake Source	none	detected in	distribution	system		52	29
Coral Beach Water System: Okanagan Lake Source						49	28
Coral Beach Pump House	1	<1			12/Jul/17		
Lake Pine Water System: Okanagan Lake Source	none	detected in	distribution	system		49	22
					TOTAL:	283	158

Appendix B – District of lake Country Sampling Sites

District of Lake Country Water System: Beaver Lake Source

MATRIX: Water Quality Sampling Sites, Criteria,Purpose, Type of sample Station	Source	MHT	BacT/Water Chemistry	Free Ci2/NTU when required	Yard Hydrant	Online WQ equipment verification	Eclipse #88	Hose bib	Sink	Stainless port	Galvanised pipe	Continuous run	Point of Disinfection	First Customer	Intermediary	End of line	Chronic problem area	Stale water problem area	Seasonal only	Future Online CT monitoing site	Recommend install Eclipse #88	Sample Site Modification Required	Recommend not use
Vernon Creek Intake RAW	Beaver Lk		х									х											
Eldorado RAW	Beaver Lk		х			Х		х															
Eldorado Reservoir/ chlorination facility	Beaver Lk					х				х		х	x										
	Beaver Lk	-	х		x	^					\vdash	^	^			х		_					
Artella Breakwater	Beaver Lk	\vdash	^		 ^	-		х			\vdash				_	х			-		-		х
	Beaver Lk	\vdash	х	_	х										х	^			х		х		Ŷ
Camp Rd Shop	Beaver Lk Beaver Lk		X	_	^					x	-	_	\vdash		X	\vdash	\vdash	х	^	_	^		\vdash
Camp Rd Reservoir (off line)		<u>.</u>	X		-			\vdash			х	_	\vdash		^	х		^	-		х		\Box
Cooney Drain	Beaver Lk Beaver Lk	Х	X		-		х			-	_^		\vdash		х	<u> </u>	\vdash	-			^		
Mulbery		х	-		L,		Х						-		^	х							х
Dewar Park	Beaver Lk		Х		X	\vdash	_						-		х	_^		_	-				^
Fire Admin Building	Beaver Lk	\vdash	х		х			\vdash					-		X			-	-				х
Jammery	Beaver Lk	\vdash	-	Х		-	_		Х	_	-		-			<u> </u>			-	-			-
Long	Beaver Lk	\vdash	х		Х	\vdash		\vdash			-		-	_		Х	-	_	-	_		\vdash	Х
Middleton Rd (Future)	Beaver Lk		х		-	-		\vdash	_				_		Х	-				-	Х	\vdash	
McCreight	Beaver Lk	_	Х	-	Х	_					_		-			Х	Х				Х		
Nighthawk	Beaver Lk		Х		Х	_										Х	Х	Х	_			\vdash	$\vdash\vdash$
North View/Chase	Beaver Lk	_	Х				Х						_			Х	Х		_	-		\vdash	\vdash
Nygren	Beaver Lk		Х				Х							= = 1		Х							\vdash
Pixton	Beaver Lk			Х							Х					Х						\vdash	Х
Pow Rd PRV Stn	Beaver Lk		х							Х					Х		_						\vdash
PR2	Beaver Lk	_		Х	Х										Х								\vdash
PR6 Vernon Ck	Beaver Lk		Х							Х				Х						Х	Х	\vdash	\vdash
Williams	Beaver Lk		Х		Х		х									Х	Х	Х					х

District of Lake Country Water System: Okanagan Lake Source

MATRIX: Water Quality Sampling Sites, Criteria,Purpose, Type of sample Station	Source	MHT	BacT/Water Chemistry	Free Ci2/NTU when required	Yard Hydrant	Online WQ equipment verification	Eclipse #88	Hose bib	Sink	Stainless port	Galvanised pipe	Continuous run	Point of Disinfection	First Customer	Intermediary	End of line	Chronic problem area	Stale water problem area	Seasonal only	Future Online CT monitoing site	Recommend install Eclipse #88	Sample Site Modification Required	Recommend not use
Arena	Ok Lk			х											х				х			х	
Clement	Ok Lk		х					х								х					х	х	
Copper Hill	Ok Lk		х		х											х					х		
Jardin Pump Stn	Ok Lk		х						х						х								
Lower Lakes Reservoir	Ok Lk		х			х				х					х								Ш
McCoubrey	Ok Lk		х				х								х								
Ok Bio Fuels (Jim Bailey Rd)	Ok Lk		х		х																		
Ok Lk Intake RAW	Ok Lk		х							х		х										х	
Ok Lk Pump Stn/chlorination																							
facility	Ok Lk					х				Х		Х	Х									\sqcup	
PR6 Ok Lk	Ok Lk	х	х							х					х						х	\sqcup	
Ponderosa pumphouse	Ok Lk		х							х		х				х							
Ponderosa PRV stn	Ok Lk		х							Х					х							Ш	\sqcup
Ottley Rd (off Stubbs)	Ok Lk		х				х							х						Х			
Upper Lakes Reservoir	Ok Lk		х					х															
Upper Zone (Future)	Ok Lk		х																		х		

District of Lake Country Water System: Oyama Lake Source

MATRIX: Water Quality Sampling Sites, Criteria,Purpose, Type of sample Station	Source	THIM	BacT/Water Chemistry	Free Ci2/NTU when required	Yard Hydrant	Online WQ equipment verification	Eclipse #88	Hose bib	Sink	Stainless port	Galvanised pipe	Continuous run	Point of Disinfection	First Customer	Intermediary	End of line	Chronic problem area	Stale water problem area	Seasonal only	Future Online CT monitoing site	Recommend install Eclipse #88	Sample Site Modification Required	Recommend not use
Easthill	Oyama Lk	х	х		х		х								х								
Oyama Rd S	Oyama Lk	х	х				х									х	х	х			х		
Oyama Rd N	Oyama Lk		х				х									х	х	х			х		
Oyama Lk/Hayton Rd	Oyama Lk			х												х	х		х				
Oyama Creek Intake RAW	Oyama Lk		х									х											
Oyama Reservoir	Oyama Lk		х							х			х									х	
Ribbleworth	Oyama Lk		х				х								х							х	
Sawmill Rd at Middlebench																							
(Future)	Oyama Lk	_		х							х				х							х	ш
Talbot Rd Booster Stn (future)	Oyama Lk			х				х								х							
5410 Todd Rd. (summer: First customer Spring (Sawmill online): could be either from Sawmill or from reservoir)	Oyama Lk		х							х				х	х	ж							
Oyama Creek intake/Chlorination Facility - Chlorinator post reservoir	Oyama Lk					х						х	х										

District of Lake Country Water System: Kalamalka Lake Source

MATRIX: Water Quality Sampling Sites, Criteria,Purpose, Type of sample Station	Source	THM	BacT/Water Chemistry	Free Ci2/NTU when required	Yard Hydrant	Online WQ equipment verification	Eclipse #88	Hose bib	Sink	Stainless port	Galvanised pipe	Continuous run	Point of Disinfection	First Customer	Intermediary	End of line	Chronic problem area	Stale water problem area	Seasonal only	Future Online CT monitoing site	Recommend install Eclipse #88	Sample Site Modification Required	Recommend not use
B-2 Reservoir	Kal			х				х						_	х			0,					
Cornwall/ Sheldon	Kal	х	х				х								х		х				х		
Evans	Kal		х				х									Х					х		
Kal Lk Intake RAW	Kal	T	х							х		х											
Kal Pump Stn	Kal		х			х				х			х	х						х			
Maclaren	Kal	T	х		х		х								х						х		
Sawmill Rd Booster (Future)	Kal		х												х	х						\Box	
Oyama Creek Chlorination Facility (distribtuion water fromKal Source (Sawmill) to																							
Oyama reservoir)	Kal					х						х	х										
Old Oyama Pumphouse	Kal			х						х		х			х								х
Teddy Bear (seasonal)	Kal		х							х						х			х				х

Coral Beach Water System: Okanagan Lake Source

MATRIX: Water Quality																							
Sampling Sites,						ioi														en.		ired	
Criteria,Purpose, Type of sample Station	Source	MΗ	BacT/Water Chemistry	Free Ci2/NTU when required	Yard Hydrant	Online WQ equipment verification	Eclipse #88	Hose bib	Sink	Stainless port	Galvanised pipe	Continuous run	Point of Disinfection	First Customer	Intermediary	End of line	Chronic problem area	Stale water problem area	Seasonal only	Future Online CT monitoing site	Recommend install Eclipse #88	Sample Site Modification Requir	Recommend not use
Coral Beach Intake RAW	CB Ok Lk		х			х						х										х	
Coral Beach Pump Stn	CB Ok Lk					х				х			х	х						х			
Coral Beach Pump Stn (distrib sample site)	CB Ok Lk		х					х					х	х									
Coral Beach Reservoir (Future)	CB Ok Lk		х												х						х		
Coral Beach South End	CB Ok Lk	х	х		х											х					х		

Appendix C – 2017 Giardia Performance Monitoring

DATE	D	TEMP C	FLOW	Free CI	СТ	СТ	CTa/CTr	Free CI	%	TOT. VOL.	FLOW	TIME
DATE	pН	TEMP C	V 19-12 19-12 19-12	8 N. 18 18 18 18 18 18 18 18 18 18 18 18 18			C Ta/CTT		1,01	USGAL		(hrs)
Jan	(highest)	(low est)	L/s	PR6	achieved	Req'd		Req'd	Inactivation	procedure and a second	Usgpm	
1	7.00	2.10	12.00	2.10	4516.6	217.6	20.8	0.10	100.00	409124	190	35.8
2	7.00	2,10	12.00	1.00	2150.8	194.7	11.0	0.09	100.00	409125	190	35.8
5	7.10	3.00	12.00	2.80	6022.2	221.7	27.2	0.10	100.00	409128	190	35.8
6	7.10	3.10	12.00	2.20	4731.7	212.4	22.3	0.10	100.00	409129	190	35.8
10	6.98	2.00	12.00	1.80	4581.1	212.4	21.6	0.08	100.00	484131	190	42.4
11	7.10	2.00	12.00	2.35	5980.9	231.5	25.8	0.09	100.00	484131	190	42.4
12	7.10	2.00	12.00	2.60	6617.1	235.0	28.2	0.09	100.00	484131	190	42.4
16	7.20	2.80	12.00	3.40	8653.2	240.3	36.0	0.09	100.00	484131	190	42.4
17	7.10	2.00	12.00	2.35	5980.9	231.5	25.8	0.09	100.00	484131	190	42.4
19	6.89	1.90	12.00	2.35	5980.9	215.0	27.8	0.08	100.00	484131	190	42.4
23	7.00	2.10	12.00	3.02	7686.1	229.8	33.5	0.09	100.00	484131	190	42.4
24	6.90	2.00	12.00	3.00	7635.2	222.3	34.3	0.09	100.00	484131	190	42.4
26	6.85	2.10	12.00	2.74	6973.5	213.6	32.6	0.08	100.00	484131	190	42.4
30	7.00	2.30	12.00	3.22	8195.1	228.8	35.8	0.09	100.00	484131	190	42.4
DATE	рН	TEMP C	FLOW	Free CI	CT	СТ	CTa/CTr	Free CI	%	TOT. VOL.	FLOW	TIME
FEB	(highest)	(low est)	L/s	PR6	achieved	Req'd		Req'd	Inactivation	USGAL	Usgpm	(hrs)
1	7.01	2.21	13.00	2.76	5479.4	225.8	24.3	0.11	100.00	409124	206	33.1
2	7.00	2.00	13.00	3.30	6551.5	234.4	27.9	0.12	100.00	409125	206	33.1
3	6.92	2.10	12.00	3.20	6882.4	224.7	30.6	0.10	100.00	409126	190	35.8
7	6.98	1.90	13.00	2.94	5836.9	230.2	25.4	0.12	100.00	409130	206	33.1
15	6.95	2.20	12.00	2.88	6194.4	222.2	27.9	0.10	100.00	409138	190	35.8
16	6.90	2.00	13.00	2.70	5360.5	218.9	24.5	0.11	100.00	409139	206	33.1
21	6.86	2.40	13.00	2.90	5757.7	211.8	27.2	0.11	100.00	409144	206	33.1
22	6.80	2.90	13.00	2.60	5162.1	196.6	26.3	0.10	100.00	409145	206	33.1
28	2.90	2.20	13.00	6.80	13501.0	24.1	560.7	0.01	100.00	409151	206	33.1
DATE	рН	TEMP C	FLOW	Free CI	CT	CT	CTa/CTr	Free CI	%	TOT. VOL.	FLOW	TIME
MAR	(highest)	(low est)	L/s	PR6	achieved	Req'd		Req'd	Inactivation	USGAL	Usgpm	(hrs)
29	7.10	5.00	10.00	0.35	903.4	141.3	6.4	0.05	100.00	409151	159	43.0
29	7.00	5.00	10.00	2.00	5162.1	176.6	29.2	0.07	100.00	409152	159	43.0
30	6.90	5.00	10.00	0.35	903.4	130.8	6.9	0.05	100.00	409153	159	43.0
30	6.90	5,00	10.00	2.00	5162.2	169.9	30.4	0.07	100.00	409154	159	43.0
DATE	рН	TEMP C	FLOW	Free CI	CT	CT	CTa/CTr	Free CI	%	TOT. VOL.	FLOW	TIME
MAY	(highest)	(low est)	L/s	PR6	achieved	Req'd		Req'd	Inactivation	USGAL	Usgpm	(hrs)
1	7.21	8.10	263.00	0.56	55.0	127.4	0.4	1.30	94.91	409124	4169	1.6

Appendix C – 2017 Giardia Performance Monitoring (continued)

DATE	рН	TEMP C	FLOW	Free CI	СТ	СТ	CTa/CTr	Free CI	%	TOT. VOL.	FLOW	TIME
June	(highest)	(low est)	L/s	PR6	achieved	Req'd		Reg'd	Inactivation	USGAL	Usgpm	(hrs)
5	6.85	14.90	167.20	1.49	230.0	80.2	2.9	0.52	100.00	409128	2650	2.6
6	6.74	15.00	226.60	1.52	173.1	76.5	2.3	0.67	100.00	409129	3592	1.9
7	6.73	15.30	251.00	1.48	152.2	74.4	2.0	0.72	100.00	409130	3979	1.7
8	6.73	15.80	197.20	1.77	231.7	73.8	3.1	0.56	100.00	409131	3126	2.2
9	6.60	15.40	175.10	2.84	418.6	77.3	5.4	0.52	100.00	409132	2776	2.5
12	6.72	14.30	214.20	2.74	330.2	87.1	3.8	0.72	100.00	409135	3395	2.0
13	6.83	14.80	230.40	2.70	302.5	87.6	3.5	0.78	100.00	409136	3652	1.9
14	6.83	14.70	228.00	2.74	310.2	88.5	3.5	0.78	100.00	409137	3614	1.9
15	6.80	13.50	207.10	2.64	329.0	94.5	3.5	0.76	100.00	409138	3283	2.1
16	6.70	13.60	260.80	2.62	259.3	90.0	2.9	0.91	100.00	409139	4134	1.6
19	6.79	14.10	265.40	2.66	258.7	90.4	2.9	0.93	100.00	409142	4207	1.6
20	6.66	14.10	266.80	2.62	253.5	85.6	3.0	0.88	100.00	409143	4229	1.6
21	6.81	14.40	299.20	2.90	250.2	90.4	2.8	1.05	100.00	409144	4743	1.4
22	6.68	13.90	296.60	2.88	250.6	88.7	2.8	1.02	100.00	409145	4702	1.5
23	6.88	13.70	343.70	2.69	202.0	96.4	2.1	1.28	100.00	409146	5448	1.3
26	6.59	16.50	360.00	2.30	164.9	69.1	2.4	0.96	100.00	409149	5707	1.2
27	6.66	16.30	371.00	2.66	185.1	73.6	2.5	1.06	100.00	409150	5881	1.2
28	6.74	15.70	353.00	2.50	182.8	78.5	2.3	1.07	100.00	409151	5596	1.2
29	6.78	15.20	330.00	3.00	234.6	84.9	2.8	1.09	100.00	409152	5231	1.3
30	6.77	15.90	375.90	2.84	195.0	79.9	2.4	1.16	100.00	409153	5959	1.1
DATE	рΗ	TEMP C	FLOW	Free CI	СТ	CT	CTa/CTr	Free CI	%	TOT. VOL.	FLOW	TIME
JULY	(highest)	(low est)	L/s	PR6	achieved	Req'd		Req'd	Inactivation	USGAL	Usgpm	(hrs)
4	6.72	16.60	428.90	3.28	197.4	76.2	2.6	1.27	100.00	409127	6799	1.0
5	6.80	16.10	433.90	2.88	171.3	79.9	2.1	1.34	100.00	409128	6878	1.0
6	6.78	16.70	438.10	3.00	176.7	76.5	2.3	1.30	100.00	409129	6945	1.0
7	6.72	17.70	428.60	2.66	160.2	68.5	2.3	1.14	100.00	409130	6794	1.0
10	6.82	17.80	448.10	2.66	153.2	70.7	2.2	1.23	100.00	409133	7103	1.0
11	6.79	17.40	417.40	2.94	181.8	73.0	2.5					1.0
12	6.80							1.18	100.00	409134	6617	
13		17.40	425.70	2.90	175.8	73.1	2.4	1.21	100.00	409135	6617 6748	1.0
	6.73	17.60	425.70 415.80	2.90 2.46	175.8 152.7	73.1 68.4	2.4	1.21 1.10	100.00 100.00		6617	1.0
14	6.73 6.69		425.70	2.90	175.8	73.1	2.4	1.21	100.00	409135	6617 6748	1.0
	Commence of the Control of the Contr	17.60	425.70 415.80	2.90 2.46	175.8 152.7	73.1 68.4	2.4	1.21 1.10	100.00 100.00	409135 409136	6617 6748 6591	1.0
14 17 18	6.69	17.60 17.70	425.70 415.80 404.90	2.90 2.46 2.78 3.44 3.16	175.8 152.7 177.2 216.2 209.0	73.1 68.4 68.1	2.4 2.2 2.6	1.21 1.10 1.07 1.16 1.18	100.00 100.00 100.00	409135 409136 409137	6617 6748 6591 6418	1.0 1.0 1.1
14 17 18 19	6.69 6.60 6.75 6.66	17.60 17.70 16.70	425.70 415.80 404.90 410.70	2.90 2.46 2.78 3.44 3.16 3.22	175.8 152.7 177.2 216.2 209.0 212.2	73.1 68.4 68.1 72.7 78.4 74.7	2.4 2.2 2.6 3.0	1.21 1.10 1.07 1.16 1.18 1.13	100.00 100.00 100.00 100.00	409135 409136 409137 409140 409141 409142	6617 6748 6591 6418 6510 6185 6209	1.0 1.0 1.1 1.0
14 17 18	6.69 6.60 6.75 6.66 6.75	17.60 17.70 16.70 16.30 16.50 17.10	425.70 415.80 404.90 410.70 390.20 391.70 380.40	2.90 2.46 2.78 3.44 3.16 3.22 2.96	175.8 152.7 177.2 216.2 209.0 212.2 200.8	73.1 68.4 68.1 72.7 78.4 74.7 73.4	2.4 2.2 2.6 3.0 2.7 2.8 2.7	1.21 1.10 1.07 1.16 1.18 1.13	100.00 100.00 100.00 100.00 100.00 100.00 100.00	409135 409136 409137 409140 409141	6617 6748 6591 6418 6510 6185 6209 6030	1.0 1.0 1.1 1.0 1.1 1.1 1.1
14 17 18 19 20 21	6.69 6.60 6.75 6.66 6.75 6.73	17.60 17.70 16.70 16.30 16.50 17.10 16.50	425.70 415.80 404.90 410.70 390.20 391.70	2.90 2.46 2.78 3.44 3.16 3.22 2.96 3.36	175.8 152.7 177.2 216.2 209.0 212.2 200.8 235.4	73.1 68.4 68.1 72.7 78.4 74.7 73.4 77.4	2.4 2.2 2.6 3.0 2.7 2.8 2.7 3.0	1.21 1.10 1.07 1.16 1.18 1.13 1.08 1.10	100.00 100.00 100.00 100.00 100.00	409135 409136 409137 409140 409141 409142	6617 6748 6591 6418 6510 6185 6209 6030 5840	1.0 1.0 1.1 1.0 1.1 1.1 1.1 1.2
14 17 18 19 20 21 24	6.69 6.60 6.75 6.66 6.75 6.73 6.64	17.60 17.70 16.70 16.30 16.50 17.10	425.70 415.80 404.90 410.70 390.20 391.70 380.40	2.90 2.46 2.78 3.44 3.16 3.22 2.96 3.36 3.26	175.8 152.7 177.2 216.2 209.0 212.2 200.8 235.4 214.9	73.1 68.4 68.1 72.7 78.4 74.7 73.4 77.4	2.4 2.2 2.6 3.0 2.7 2.8 2.7 3.0 3.0	1.21 1.10 1.07 1.16 1.18 1.13 1.08 1.10 1.09	100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00	409135 409136 409137 409140 409141 409142 409143	6617 6748 6591 6418 6510 6185 6209 6030 5840 6208	1.0 1.0 1.1 1.0 1.1 1.1 1.1 1.2 1.1
14 17 18 19 20 21 24 25	6.69 6.60 6.75 6.66 6.75 6.73 6.64 6.69	17.60 17.70 16.70 16.30 16.50 17.10 16.50 17.00	425.70 415.80 404.90 410.70 390.20 391.70 380.40 368.40	2.90 2.46 2.78 3.44 3.16 3.22 2.96 3.36	175.8 152.7 177.2 216.2 209.0 212.2 200.8 235.4 214.9 220.8	73.1 68.4 68.1 72.7 78.4 74.7 73.4 77.4 71.7	2.4 2.2 2.6 3.0 2.7 2.8 2.7 3.0 3.0 2.9	1.21 1.10 1.07 1.16 1.18 1.13 1.08 1.10 1.09	100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00	409135 409136 409137 409140 409141 409142 409143 409144	6617 6748 6591 6418 6510 6185 6209 6030 5840 6208 5818	1.0 1.0 1.1 1.0 1.1 1.1 1.1 1.2 1.1
14 17 18 19 20 21 24	6.69 6.60 6.75 6.66 6.75 6.73 6.64	17.60 17.70 16.70 16.30 16.50 17.10 16.50 17.00	425.70 415.80 404.90 410.70 390.20 391.70 380.40 368.40 391.60	2.90 2.46 2.78 3.44 3.16 3.22 2.96 3.36 3.26	175.8 152.7 177.2 216.2 209.0 212.2 200.8 235.4 214.9	73.1 68.4 68.1 72.7 78.4 74.7 73.4 77.4	2.4 2.2 2.6 3.0 2.7 2.8 2.7 3.0 3.0	1.21 1.10 1.07 1.16 1.18 1.13 1.08 1.10 1.09	100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00	409135 409136 409137 409140 409141 409142 409143 409144 409147	6617 6748 6591 6418 6510 6185 6209 6030 5840 6208	1.0 1.0 1.1 1.0 1.1 1.1 1.1 1.2 1.1
14 17 18 19 20 21 24 25	6.69 6.60 6.75 6.66 6.75 6.73 6.64 6.69	17.60 17.70 16.70 16.30 16.50 17.10 16.50 17.00	425.70 415.80 404.90 410.70 390.20 391.70 380.40 368.40 391.60 367.00	2.90 2.46 2.78 3.44 3.16 3.22 2.96 3.36 3.26 3.14 3.14 2.92	175.8 152.7 177.2 216.2 209.0 212.2 200.8 235.4 214.9 220.8 192.1 176.5	73.1 68.4 68.1 72.7 78.4 74.7 73.4 77.4 71.7 77.0 78.7	2.4 2.2 2.6 3.0 2.7 2.8 2.7 3.0 3.0 2.9 2.4	1.21 1.10 1.07 1.16 1.18 1.13 1.08 1.10 1.09 1.09 1.29	100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00	409135 409136 409137 409140 409141 409142 409143 409144 409147 409148	6617 6748 6591 6418 6510 6185 6209 6030 5840 6208 5818	1.0 1.0 1.1 1.0 1.1 1.1 1.1 1.2 1.1
14 17 18 19 20 21 24 25 26	6.69 6.60 6.75 6.66 6.75 6.73 6.64 6.69 6.78	17.60 17.70 16.70 16.30 16.50 17.10 16.50 17.00 16.20 16.40	425.70 415.80 404.90 410.70 390.20 391.70 380.40 368.40 391.60 367.00 422.00	2.90 2.46 2.78 3.44 3.16 3.22 2.96 3.36 3.26 3.14 3.14	175.8 152.7 177.2 216.2 209.0 212.2 200.8 235.4 214.9 220.8 192.1	73.1 68.4 68.1 72.7 78.4 74.7 73.4 77.4 71.7 77.0 78.7	2.4 2.2 2.6 3.0 2.7 2.8 2.7 3.0 3.0 2.9 2.4	1.21 1.10 1.07 1.16 1.18 1.13 1.08 1.10 1.09 1.09	100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00	409135 409136 409137 409140 409141 409142 409143 409144 409147 409148 409149	6617 6748 6591 6418 6510 6185 6209 6030 5840 6208 5818 6690	1.0 1.0 1.1 1.0 1.1 1.1 1.1 1.2 1.1 1.2

<u>District of Lake Country</u> <u>2017 Water Operations Annual Report</u> **Appendix C – 2017 Giardia Performance Monitoring (continued)**

DATE	-11	TEMP C	FLOW	Free CI	СТ	СТ	CTa/CTr	Free CI	0/	TOT. VOL.	FLOW	TIME
DATE	pH /bishasak			PR6	achieved		Cla/Cli	Oversion record		USGAL		(hrs)
AUG	(highest)	(low est)	L/s			Req'd	0.7	Req'd	Inactivation		Usgpm	
1	6.74	17.50	395.00	2.96	193.4	71.1	2.7	1.09	100.00	409124	6262	1.1
3	6.80	17.30	406.00	3.04 2.90	193.3 188.1	74.1 74.5	2.6	1.17 1.15	100.00 100.00	409125 409126	6436 6309	1.1
4	6.83 6.76	17.30 17.80	398.00 397.00	2.80	182.0	69.6	2.6	1.13	100.00	409127	6293	1.1
8	6.74	18.10	368.00	3.22	225.8	69.1	3.3	0.98	100.00	409131	5834	1.2
9	6.77	17.60	350.00	3.44	253.7	73.1	3.5	0.99	100.00	409132	5548	1.2
10	6.78	17.50	334.00	3.32	256.6	73.5	3.5	0.95	100.00	409133	5295	1.3
11	6.74	17.50	319.00	3.38	273.5	72.5	3.8	0.90	100.00	409134	5057	1.3
14	6.63	17.70	274.00	3.88	365.5	69.9	5.2	0.74	100.00	409137	4343	1.6
15	6.71	16.70	267.00	3.12	301.6	74.9	4.0	0.77	100.00	409138	4232	1.6
16	6.84	16.10	315.00	3.32	272.0	82.9	3.3	1.01	100.00	409139	4993	1.4
17	6.87	16.10	337.00	3.48	266.5	84.5	3.2	1.10	100.00	409140	5342	1.3
18	6.71	16.20	324.00	3.34	266.1	78.3	3.4	0.98	100.00	409141	5136	1.3
21	6.40	15.40	318.70	3.96	320.7	74.8	4.3	0.92	100.00	409144	5052	1.3
22	6.68	15.60	345.30	3.22	240.7	80.2	3.0	1.07	100.00	409145	5474	1.2
23	6.80	16.30	351.00	3.40	250.0	80.8	3.1	1.10	100.00	409146	5564	1.2
24	6.77	16.50	333.00	3.38	262.0	78.7	3.3	1.02	100.00	409147	5279	1.3
25	6.75	15.90	319.00	3.22	260.5	80.8	3.2	1.00	100.00	409148 409151	5057 4795	1.3
28 29	6.77	15.40	302.50	3.78 3.52	322.5 304.3	86.4 81.5	3.7	1.01 0.94	100.00 100.00	409151	4793	1.4
30	6.72 6.87	15.80 15.80	298.60 307.60	3.18	266.8	85.1	3.1	1.01	100.00	409153	4876	1.4
DATE	pH	TEMP C	FLOW	Free CI	CT	CT	CTa/CTr	Free CI	%	TOT. VOL.	FLOW	TIME
SEPT	(highest)	(low est)	L/s	PR6	achieved	Req'd	Clascii	Req'd	Inactivation	USGAL	Usgpm	(hrs)
_			_	3.28	293.9	83.0	3.5	0.93	100.00	409129	4565	1.5
6 12	6.90 6.70	16.40 15.70	288.00 172.00	4.08	612.2	83.2	7.4	0.95	100.00	409129	2727	2.5
15	7.00	14.00	168.80	1.00	152.9	85.3	1.8	0.56	100.00	409138	2676	2.5
18	7.10	11.80	111.70	0.97	224.1	102.7	2.2	0.44	100.00	409141	1771	3.9
25	6.90	10.90	125.70	3.42	702.2	122.3	5.7	0.60	100.00	409148	1993	3.4
DATE	рН	TEMP C	FLOW	Free CI	СТ	CT	CTa/CTr	Free CI	%	TOT. VOL.	FLOW	TIME
ОСТ	(highest)	(low est)	L/s	PR6	achieved	Req'd		Req'd	Inactivation	USGAL	Usgpm	(hrs)
2	6.95	11.10	70.00	2.24	825.9	115.4	7.2	0.31	100.00	409125	1110	6.1
10	6.95	8.80	44.00	2.70	1583.8	139.2	11.4	0.24	100.00	409133	697	9.8
11	7.00	8.80	31.00	2.06	1715.1	136.3	12.6	0.16	100.00	409134	491	13.9
12	6.92	9.10	33.00	1.98	1548.6	128.7	12.0	0.16	100.00	409135	523	13.0
23	6.99	9.10	12.00	3.80	8173.3	145.8	56.1	0.07	100.00	409146	190	35.8
24	6.91	9.10	12.00	1.98	4258.7	128.2	33.2	0.06	100.00	409147	190	35.8
31	7.15	8.00	13.00	1.52	3017.9	145.7	20.7	0.07	100.00	409154	206	33.1
DATE	pН	TEMP C	FLOW	Free CI	CT	CT	CTa/CTr	Free CI	%	TOT. VOL.		TIME
NOV	(highest)	(low est)	L/s	PR6	achieved	Req'd		Req'd	Inactivation	USGAL	Usgpm	(hrs)
2	7.15	7.60	13.00	1.50	2978.0	149.6	19.9	0.08	100.00	409125	206	33.1
7	7.15	6.50	8.00	2.14	6904.0	170.2	40.6	0.05	100.00	409130	127	53.8
8	7.10	6.50	8.00	1.10	3548.8	151.2	23.5	0.05	100.00	409131	127	53.8
27	7.10	5.90	6.00	1.98	8517.5	172.1	49.5	0.04	100.00	409150	95	71.7
DATE	рН	TEMP C	FLOW	Free CI	СТ	CT	CTa/CTr	Free CI	%	TOT. VOL.	FLOW	TIME
DEC	(highest)	(low est)	L/s	PR6	achieved	Req'd		Req'd	Inactivation	USGAL	Usgpm	(hrs)
4	7.10	5.70	7.00	2.07	7632.1	175.7	43.4	0.05	100.00	409127	111	61.5
6	7.17	5.60	7.00	2.60	9586.3	188.0	51.0	0.05	100.00	409129	111	61.5
7	7.17	5.60	7.00	2.50	9217.6	186.9	49.3	0.05	100.00	409130	111	61.5
24	7.10	5.60	7.00	3.00	11061.6	187.1	59.1	0.05	100.00	409147	111	61.5
25	7.10	5.60	7.00	2.60	9586.8	183.1	52.4	0.05	100.00	409148	111	61.5
26	7.10	5.60	7.00	2.50	9218.1	182.0	50.6	0.05	100.00	409149	111	61.5
27	7.10	5.60	7.00	2.00	7374.5	176.0	41.9	0.05	100.00	409150	111	61.5
28	7.10	5.60	7.00	3.00	11061.7	187.1	59.1	0.05	100.00	409151	111	61.5
29	7.10	5.60	7.00	2.70	9955.6	184.1	54.1	0.05	100.00	409152	111	61.5
30	7.10	5.60	7.00	3.00	11061.8	187.1	59.1	0.05	100.00	409153	111	61.5

Appendix D – Nutrient Sampling Upland Drinking Water Reservoirs

		2017	Nutrients			
Site		BEAVER	OYAMA	DAMER	BEAVER	OYAMA
Date		23-May-2017	23-May-2017	23-May-2017	29-Jun-2017	30-Jun-2017
	The Party of the P	A	nions			
Nitrate (as N)	mg/L	0.021	<0.0010	<0.010		
Nitrate (MAC)	mg/L	10	10	10	10	10
Nitrite (as N)	mg/L	<0.010	<0.010	<0.010	_	
Nitrite (MAC)	mg/L	1	1	1	1	1
Phosphate (as P)	mg/L	<0.010	<0.010	<0.010	-	
No current guidelines						
Sulfate	mg/L	1.8	1.4	1.8	-	
Sulfate (AO)	mg/L	≤ 500	≤ 500	≤500	≤ 500	≤ 500
		General	Parameters			
Alkalinity, Total (as CaCO3)	mg/L	17.4	14.4	16.4		
No current guidelines			•			
Alkalinity,Phenolphthalein (as	mg/L	<1.0	<1.0	<1.0	1- 1	
No current guidelines						
Alkalinity, Bicarbonate (as CaCO3)	mg/L	17.4	14.4	16.4		
No current guidelines						
Alkalinity, Carbonate (as CaCO3)	mg/L	<1.0	<1.0	<1.0	-	
No current guidelines						
Alkalinity, Hydroxide (as CaCO3)	mg/L	<1.0	<1.0	<1.0		
No current guideline						
Ammonia (as N)	mg/L	0.044	0.037	0.041	¥	
No current guidelines						
Total Organic Carbon	mg/L	11.4	13.0	19.8		
No current guidelines						
Dissolved Organic Carbon	mg/L	10.8	12.8	18.9	-	
No current guidelines						
Chlorophyll-a	ug/L	1.47	1.12	0.84	-	
No current guidelines		_				
Colour, True	CU	55	50	110	-	and the same
Colour(AO)	CU	≤15	≤15	≤15	≤15	≤15
Nitrogen, Total Kjeldahl	mg/L	0.229	0.297	0.303		
No current guidelines						
Phosphorus, Total (as P)	mg/L	0.0183	0.0162	0.0187	-	
No current guidelines						
		Calculated	Parameters			
Hardness, Total (as CaCO3)	mg/L	20.6	16.6	21.2	21.4	18.7
No current guidelines			,			
Nitrate+ Nitrite (as N)	mg/L	0.0211	<0.0100	<0.0100	-	THE PERSON AND
No current guidelines						
Total Nitrogen	mg/L	0.250	0.297	0.303	-	
No current guidelines			,			
Organic Nitrogen	mg/L	0.185	0.260	0.262	-	
No current guidelines						

City			Nutrients	DANAES	DEALER	CVANA
Site Date		BEAVER 23-May-2017	OYAMA 23-May-2017	DAMER 23-May-2017	BEAVER 29-Jun-2017	OYAMA 30-Jun-201
Date			letals	25-1Vldy-2017	29-1011-2017	30-3011-201
Total Dissolved Aluminium	mg/L	0.0531	0.0614	0.198	-	
Total Recoverable Aluminium	mg/L		-		0.0716	0.0714
Aluminium (OG)	mg/L	< 0.1	< 0.1	< 0.1	< 0.1	<0.1
Total Dissolved Antimony	mg/L	<0.00010	<0.00010	<0.00010	-	
Total Recoverable Antimony	mg/L		-		<0.00010	<0.00010
Antimony (MAC)	mg/L	0.006	0.006	0.006	0.006	0.006
Total Dissolved Arsenic	mg/L	<0.00050	<0.00050	<0.00050	-	-
Total Recoverable Arsenic	mg/L		-		<0.00050	<0.00050
Arsenic (MAC)	mg/L	0.01	0.01	0.01	0.01	0.01
Total Dissolved Barium	mg/L	0.0051	0.0068	0.0081	-	-
Total Recoverable Barium	mg/L	-	-		0.0055	0.0073
Barium (MAC)	mg/L	1	1	1	1	1
Total Dissolved Beryllium	mg/L	<0.00010	<0.00010	<0.00010	-	
Total Recoverable Beryllium	mg/L	-	-	-	<0.00010	<0.00010
No current guidelines	1116/2				10.00010	40.00010
Total Dissolved Bismuth	mg/L	<0.00010	<0.00010	<0.00010	-	
Total Recoverable Bismuth	mg/L		-	-	<0.00010	<0.00010
No current guidelines	I 1116/ L				~0.00010	70,00010
Total Dissolved Boron	mg/L	0.005	0.006	0.014	_	
Total Recoverable Boron	mg/L	0.005	-	0.014	0.016	<0.004
Boron (MAC)	mg/L mg/L	5	5	5	5	5
					5	5
Total Dissolved Cadmium	mg/L	<0.000010	<0.000010	<0.000010		-0.000010
Total Recoverable Cadmium	mg/L	0.005	0.005	0.005	<0.00010 0.005	<0.000010 0.005
Cadmium (MAC) Total Dissolved Calcium	mg/L mg/L	5.44	4.07	4.68	0.005	0.005
Total Recoverable Calcium	mg/L	5.44	4.07	4.00	5.59	4.59
	IIIg/L	Designation of the second	-	5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5.59	4.59
No current guidelines		10,00000	10,00000	0.00050		
Total Dissolved Chromium	mg/L	<0.00050	<0.00050	0.00050		- 0.00004
Total Recoverable Chromium	mg/L				<0.00050	0.00061
Chromium (MAC)	mg/L	0.05	0.05	0.05	0.05	0.05
Total Dissolved Cobalt	mg/L	<0.00010	<0.00010	<0.00010	-	- 0.00040
Total Recoverable Cobalt	mg/L	- 555	-	-	<0.00010	<0.00010
No current guidelines	1	0.00000	0.004.40	0.00220		William St. Land St. Co.
Total Dissolved Copper	mg/L	0.00092	0.00142	0.00220		-
Total Recoverable Copper	mg/L	-	-	<u> </u>	0.00106	0.00166
Copper (AO)	mg/L	≤1	≤1	≤1	≤1	≤1
Total Dissolved Iron	mg/L	0.126	0.117	0.184	-	-
Total Recoverable Iron	mg/L				0.165	0.164
ron (AO)	mg/L	≤0.3	≤0.3	≤0.3	≤0.3	≤0.3
Total Dissolved Lead	mg/L	<0.00010	<0.00010	<0.00010	-	-
Total Recoverable Lead	mg/L		-	- 1	<0.00010	<0.00010
Lead (MAC)	mg/L	0.01	0.01	0.01	0.01	0.01
Total Dissolved Lithium	mg/L	0.00042	0.00056	0.00114	-	
Total Recoverable Lithium	mg/L	-	_		0.00042	0.00059
No current guidelines'						
Total Dissolved Magnesium	mg/L	1.70	1.55	2.30	=:	
Total Recoverable Magnesium	mg/L	-	-		1.80	1.75
No current guidelines						
Total Dissolved Manganese	mg/L	0.0110	0.00582	0.00475	-	(10 m = 10 m)
Total Recoverable Manganese	mg/L		-	-	0.00546	0.0100
Manganese (AO)	mg/L	≤0.05	≤ 0.05	≤0.05	≤ 0.05	≤0.05
Total Dissolved Mercury	mg/L	<0.00002	<0.00002	<0.00002	-	
Total Recoverable Mercury	mg/L	er (= (= (= (= (= (= (= (= (= (= (= (= (=	= 1		0.000035	<0.000020
Mercury (MAC)	mg/L	0.001	0.001	0.001	0.001	0.001
Total Dissolved Molybdenum	mg/L	0.00018	0.00015	0.00021	-	
otal Recoverable Molybdenum	mg/L		-		0.00021	0.00014
No current guidelines	-					
Total Dissolved Nickel	mg/L	0.00071	0.00118	0.00202	·	
Total Recoverable Nickel	mg/L	- D. C. C.	-	-	0.00077	0.00134
No current guidelines		and the second second				3,00201
Total Dissolved Phosphorus	mg/L	<0.050	<0.050	<0.050	-	
Total Recoverable Phosphorus	mg/L	-	-	-	<0.050	<0.050
otal necoverable i nospiloras	1 1116/ L			per and the first section of the	-0.030	\0.030

Site Date		BEAVER				
Date		DLAVLIN	OYAMA	DAMER	BEAVER	OYAMA
		23-May-2017	23-May-2017	23-May-2017	29-Jun-2017	30-Jun-2017
THE RESIDENCE OF THE PARTY OF T		Metals	Continued	The Paris of the P	STATE OF THE PARTY OF	
Total Dissolved Potassium	mg/L	0.84	0.96	1.28	1=	2 1 2 1 2 (A) (A)
Total Recoverable Potassium	mg/L		=1		0.92	1.12
No current guidelines						
Total Dissolved Selenium	mg/L	<0.00050	<0.00050	<0.00050	-	
Total Recoverable Selenium	mg/L		-	U Service Service	<0.00050	<0.00050
Selenium (MAC)	mg/L	0.05	0.05	0.05	0.05	0.05
Total Dissolved Silicon	mg/L	4.7	4.6	7.2	-	BANK BANK
Total Recoverable Silicon	mg/L		-		4.6	4.7
No current guidelines						
Total Dissolved Silver	mg/L	0.000077	0.000120	0.000189	_	A Land Control of
Total Recoverable Silver	mg/L	-	-	-	<0.000050	<0.000050
No current guidelines	1116/ -					10.000050
Total Dissolved Sodium	mg/L	1.97	1.96	2.22	-	
Total Reocoverable Sodium	mg/L	1.57	-	-	2.06	2.28
Sodium (AO)	mg/L	≤ 200	≤ 200	≤ 200	≤ 200	≤ 200
					<u> </u>	<u> </u>
Total Pacoverable Strontium	mg/L	0.0309	0.0275	0.0278		
Total Recoverable Strontium	mg/L	1000年5月2日	-		0.0313	0.0333
No current guidelines						
Total Dissolved Sulfur	mg/L	<3.0	<3.0	<3.0		
Total Recoverable Sulfur	mg/L	N. 11-62-74	(-	EVEN FOR MINERAL	<3.0	<3.0
No current guidelines						
Total Dissolved Tellurium	mg/L	<0.00020	<0.00020	<0.00020	:=	
Total Recoverable Tellerium	mg/L		-		<0.00020	<0.00020
No current guidelines						
Total Dissolved Thallium	mg/L	<0.000020	<0.000020	<0.000020	H	
Total Recoverable Thallium	mg/L				<0.000020	<0.000020
No current guidelines						
Total Dissolved Thorium	mg/L	<0.00010	<0.00010	<0.00010	-	
Total Recoverable Thorium	mg/L				<0.00010	<0.00010
No current guidelines						
Total Dissolved Tin	mg/L	<0.00020	<0.00020	<0.00020	-	
Total Recoverable Tin	mg/L		-		<0.00020	<0.00020
No current guidelines						
Total Dissolved Titanium	mg/L	<0.0050	<0.0050	0.0058	-	
Total Recoverable Titanium	mg/L	10.0000	-	-	<0.0050	<0.0050
No current guidelines					10.0050	1 40.0050
Total Dissolved Uranium	mg/L	0.000038	0.000052	0.000150	_	
Total Recoverable Uranium	mg/L	0.000038	0.000032	0.000130	0.000037	0.000049
	702	0.02	0.02	0.02		
Uranium (MAC)	mg/L				0.02	0.02
Total Dissolved Vanadium	mg/L	<0.0010	<0.0010	<0.0010	- 0.0010	
Total Recoverable Vanadium	mg/L	TABLE 1	-		<0.0010	<0.0010
No current guidelines						
Total Dissolved Zinc	mg/L	<0.0040	<0.0040	<0.0040	-	100 - 100 -
Total Recoverable Zinc	mg/L		-	as Ref - rail is	<0.0040	0.0041
Zinc (AO)	mg/L	≤5	≤5	≤5	≤5	≤5
Total Dissolved Zirconium	mg/L	0.00062	0.00071	0.00172	12	National Control
Total Recoverable Zirconium	mg/L		-1	-	0.00056	0.00055
No current guidelines						
Glossary of Terms, GCDWQ						
<	Less than. Re	ported when result	is less than the re	ported detection lin	nit	
≤	Less than or o	equal to. Reported	when result is less	or equal to the repo	rted detection limi	it
AO	Aesthetic ob	jective. Refer to GC	DWQ			
MAC	Maximum ac	ceptable concentra	tion. Refer to GCD\	WQ		
OG	Operational	guidance values. Re	fer to GCDWQ			
		it. Color reference		n cobalt standard		
TCU						
	Nephelomet	ric turbiaity unit				
NTU	Nephelomet					
NTU uS/cm	Microsiemen	ıs per centimeter	ing water mav be c	classified in terms of	its calcium carbona	ite
NTU	Microsiemen The degree o	s per centimeter of hardness of drink		classified in terms of um hard, 60 to <120		

Appendix E - Beaver Lake & Oyama Lake Levels and Discharge

Appendix F – Drought Forecast for Beaver Lake & Oyama Lake

Appendix G - 2017 SOURCE AREA MAP

Appendix H – Kalamalka UV Station log Sheets

January 2017

100		Т				_		_						_	_	_	_	_	_			_	_						_	_				
JANI	31	30	29	28		26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	=	10	9	8	7	6	5	4	ω	2	_	DAY		
JARY	20	13.	000	SHILL	0000	0900	1300	1130	1640	000		1165	050	200	1200	0110			1120	1260	10,06	830	0900	830	8:00	9,00	000	0470	10:00	1120	0850	TIME	2017	JANUARY
	7/-	Mari	イド	71-	J.Z.	JA	7.0	J. R.	ゴス	503		J. N.	5.1	J.C.	マ.人.	200			200	_	7.7	000	いん	HULH	May	7/2	63	17.7	11=	7.1	JA	Chk'd	7	IRY
	7234877	2374676	2333 115	5	8502653		2330859	805 6752	520022	58885E		2327 459	2327268	2326621	2325352	2315362			2323026	2321561	2301267	0001656	229692	2319299	85h81 EB	2317343	EDIC 188	231726	7315331	2317 139	2313559	401 (m3)	Totalizer	FL
	2744296	9455HE8	2743359	2741841	2741866	18>1745	2760016	2739 863	2279459	902LELE		323 954 7	273500		2734546	2233092			6021622	2731000	2730264	anagost.	2728877	+ SHOLOLG	+ SOFERE	2726869		2717117	2724971	2723 (89	2763 168	402 (m3)	Totalizer	FLOW
401/402	401/402	401/402	401/402	401/402	(401)/402	401/402	401/402	(401)402	401/402)	401/402	401/402	401/402	401/402	(40)1/402	(40)/402	401/402	401/402	401/402	401/402	401/402	401(402)	401/402	401/402	401/402	\sim	401/402	401/402	(401)/402	401/402	401/402	401/402		Reactor	Pinning
	69		65		65.9			68.2	659				70	68.3	3.49						67				8.50		89	1.13			8.22	(W/m2)	1	La
	39		28		85.0			2.36	23.8				62.6	839	8.56						8.27				882	4	90	1.28			122	(W/m2)	2	Lamp Intensity
	2		99		7.84			94.6	162				9.38	102.8	8.101					7	1.38				1.96		101	8.46			31.18	(W/m2)	3	sity
	63		61		61.2			61.6	2.93				61.9	63.8	13.5						13.5				62.5		63	13.5			1.23	(W/m2)	UV SP	Do
	3.45		3.99		4.05			4.0	71.7				3.8	30.4	4.07						3.97				3.98		30°F	3.69			600	Log	Validated	Dosage
	15		27		39		ф	38.5	37.9			ф	39	39	309	P			p	0	3.78		4		39.37		5	39.4	1	0	38.66	(LPS)		Flow
	41.0		91.1	91.4	21.3		91.6	51.5	81.2			8.12	80.3	273	91.1	21.5			2.16	91.6	21.2		316	4.68	91.2	97.3	4.16	91.4	90.2	41.8	1.16	%		TVI
	3.7		4.7		23			5.3	23				S	5.3	5.3						2.4				2,4		4.3	4.2			28	(KWH)	Bank 1	Po
	1.7		2.6		9.3			6.2	2.5				1.7	9.2	K,						1.7				2.6		7.6	< .6			1.7	(KWH)	Bank 2	Power

February 2017

FEB	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	_	DAY		_
FEBRUARY		7		Soo	1030	8,30	2,30	8170	21.8		1030				11:15	0450	1150	1220	5.13	8.49	8:50	0230	1415	1020	11:20	1100	0850	0900	2101	SHE		TIME	2017	FEBRUARY
				_	8/8	7	77-	7/	71		RUS				7/=	7.2	27	J. A.		1	MUN	J 1.	J.R	7.2	7	20	SU	7.0	1.0	EOB		Chk'd		ARY
		200		2353677	1 LOS 58E	2351717	2351528	7345474	284412	1	LEGBIER				234 6019	2345-838	2365651	2346219	2344029	2343413	B348168	234,1929	5241439	2340247	23385-29	2338369	2338 167	1529553	7375681	935556		401 (m3)	Totalizer	F
		Na. In	122	2764460	48LE4LE	04.52.2L	7767079	216/815	2761129		55.85.9Lt				2756306	2255333	2756356	2756175	3525E	SEEBSEB	261252	2750531	1850522	2750359	2448746	2267932	108 7722		2057323	108346		402 (m3)	Totalizer	FLOW
401/402	401/402	401/402	401/402	401/402	(401)/402	401/402	401/402	401/402	401/402>	401/402	401/402	401/402	401/402	401/402	401/402	401/402	401/402	401/402	401/402	403/402	401/402	401/402	(40)/402	401/402	401/402	401/402	401/402	401/402	401/402	401/402	401/402		Reactor	Pinning
				88	458				91							102.1				h.73			15.98			819			93.3	200		(W/m2)	1	<u> </u>
				80	5				8/							89.7				C'hb			4.18			628			2.88	48		(W/m2)	2	Lamp Intensity
				26	しなり				26							5.23				4 PB			1.78			2.36			65.5	00		(W/m2)	3	sity
				72.7	14				73							1.32				1.54			25.2	-		122			122	5		(W/m2)	UV SP	D
	,	A A	1	4,12	4,19				4.13							6.60				4.31			5.28			4.31			4.33	4.37		Log		Dosage
				39	39				39							39	ф	Ф		36.72		b	39			39	4	Þ	39	نر		(LPS)		Flow
				84.9	3.00	97.1	907		90.0						91.9	5.13	9-18	91.9		476		6.10	5.18		91.4	2.10	8.18	212	2.10	5.65		%		TVI
		,		3.7	3.6				3.7							2 2				3.6			122			2,2		- 1	7 7	3/2	4	(KWH)	Bank 1	Pc
		17		1.7	- No			,	17							0.0				0			10		,	7.7			1.0	- x	7.	(KWH)	Bank 2	Power

March 2017

31 M/	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	ω	2	_	DAY		
RCH		1020	1510	1330		12	1630	1020	BID	S	7	2115	Si Co	1165	126,0	1015			200	629	2101	13515	14:00	14145	1330	0230	0950	0850	130	11:30	TIME	2017	MARCH
J.R.	7.2	Ros	27			200		O'K	Om	53	PM PM	*	7/2	5.1	7.1	J.R			peller	Men	200	7/5	715	7/5	803	J. K.	75.		200	71	Chk'd	7	CH
51842 52	1062 7252	0 116 156	279 1252	9851LEB	SOHLEC	C88138	2554 BBC7	2368075		3347458	2365959	CR 55 922	23657	2365385	2366900	7122952			-	2800082	26895Ee	1235821	1158352	148 2582	9538186	~	4.72 15c2	2357580	88555E	5986-582	401 (m3)	Totalizer	F
108681.2	218 612	0	_	278603H	25.48ce	SHO FOLD	0562823				2730656	2779010	246642	2777 041	27768-8	685542			158844	>>18+tB	BELLE.	2772703	277:547	272453	39LE	272	232775	2 16 759	21 54 LP	2845762	402 (m3)	Totalizer	FLOW
401/402	401/402	401/402	401/402	401/402	401/402	401/402	(40)/402	(401/402	401/402	401/402	(401)/402	403/402	401/402	401/402	401/402	401/402	401/402	401/402	401/402	403/402	401/402	401/402	401/402)	401/402	401/402	401/402	401/402	401/402	401/402	401/402		Reactor	Pinin
2.70	000	200		45'9			27.5	8	97,5		2	8/	86			101.0				218	103	103	101		201	104.6		1027			(W/m2)	1	La
00.0				78.7			4.16	89,2	74.4			28	S			91.0				2,16	58	90	28		200	0 56		3.88			(W/m2)	2	Lamp Intensity
0,0	2/8			4.76			200-2	90.6	93,2			824	83			9.76				28	3.6	-36	176		38	5.76		73			(W/m2)	3	sity
1 1	70 8			11.8			5.77	75.5	69.4		-	7/8	75			80	nd-			24	15	77	75-		77	18		75.7	4.76		(W/m2)	UV SP	D
1.5.1	111			4:16			4.30	4.19	4.02			6.23	4.14			92.2				4.32	46.12	4.34	4.25-		L.S.H	2.40		62.3			Log	Validated	Dosage
01	20		B	U			3 8	35	39		ф	3.7	39	b	Ф	39.9			,	28	100	37	39		27	39	Þ	29			(LPS)		Flow
3.17	110		8.10	90			91.6	91.1	8977	90	87.8	20%	4.48	81.5	9.8	91.2				28	90.6	206	116	91.2	8.18	8118	41.5	91.9		90.9	%		TVI
, .	2			47			3.6	36	3.7	+		4.5	4.8			8.4					30		27		30	-		2.7			(KWH)	Bank 1	Pc
8	10			1,6			1.16	ò	1,6			8.7	1.7			1.7				123	1.7	1.7	1.6		1.7	1.7		1.7			(KWH)	Bank 2	Power

April 2017

DAY.		Т	Г	17	-	Т	Т	Т	Т	Т	Т					Т																		
A	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7		5	4	ယ	2	->	DAY		
PRIL		3418	1000	1400			11:30	2836		1100	113/2	OSL	1200	(CRO)					1209	6400	1414	Coll	6:30	D.E	(100)	0900	1000	2001	1315	1680	1110	TIME	2017	APRIL
		7-	1	miles!			723	715	50	代の	808	600	POS S	Kaso					7 /	76	7.0	ENS	Limi	Meri	803	J. 1.	RUR	ブル	J. 1.	71	77	Chk'd		
		2594776	7394717	8394153			3390786	2340805	L140686	17.35%e	138869	08280	HELSER	CAL CASTE					2383767	238275	2381956	HEY 0 856	75003E	CESESC	6518156	2371962	337635%	2376 176	1265267	525255	2376 299	401 (m3)	Totalizer	El.
		2812270	2810618	1540188			9808635	2807605	LX990AC	1259 086	18h5088	CICHOSE CICHOSE	08.88086	E5550X					2788866	2797 898	2797829		248584C	F 3328 FC	3845PLE	2793951	SOBELLE	227.1822	118 1222	2701617	616 6817	402 (m3)	Totalizer	FLOW
401/402	201/402	401/402	401/402	401/402	401/402	401/402	401/402	401/402	401/402	401/402	(401/402	401/402	(401/402	401/402	401/402	401/402	401/402	401/402	401/402	1	401/402	401/402	401/402	403//402	401/402	401)402	401/402	401/402	401/402	401/402	401/402		Reactor	Dimpin
		87	-	5				100		20	000	-	ŝ	N					2.311	218				2. 23		1.121		1.911				(W/m2)	1	La
	-	78	01. 0	250				2		20	30	-	on	20					1.30	000				4.28		3.64		79.9				Establish Colors	2	Lamp Intensity
		91	97	-				2	1	カシ	5		2.30	H 3					3.26	55.7				58.2		1.38		238				(W/m2) (W/m2)	3	sity
1		44		2 20				75		4	لر		4	1					777	71.9				7 F		69.1		21.5				(W/m2)	UV SP	0
		65.77	Crh	DS-11			1	4.70		5E-17	4.34		21:17	21.17				- 1	223	4.22				4.34	- 1	72.7		4.19				Log	Validated	Dosage
		××	01	B				55		38	355		20	1					50.07	39	B			28		300		00	0	\$	P	(LPS)		Flow
		97.5	200	214	-		10.1	2.08		206	90.6		7	4					3.08	9.10	010	1 1 1 1		87.4		9.10		91.6	8.12	6,16	3.12	%		TVU
	+	75	(40)	20				37		3.6	37		5	٧					3.8	3.8				3.6		V X		257			1	(KWH)	Bank 1	Pc
		10	103	10				X		7	- co	0	7	1.6				-	(7	1.8				7		1.7		3.1				(KWH)	Bank 2	Power

May 2017

1		-															_	_		_			_	_		_		_						
M	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	S)	4	ω	2	-	DAY		
AY	1130	SAMI	0311	10170	430	1230	1115	1030	1300		080		1300	915	1350	1020	5311			2700	0900	530	1250	1130	0411			900	1030	1045	1510	TIME	2017	MAY
	600	803	4	THE	TF	J.R.	200	500	K 33		500		500	800	7.7	J.L.	7.7			25	アス	83	J.K	5.2.	J. R.			83	253	803	75	Chk'd		
	SCROKE	SA SHE	59453	2437920	282242	24,30	PHSENC	0161EHE	SOLDINE		15941 HB		FEET IN	1xx 1x	2410	0132	2409			2406 386	2406	8984ane	2603	2402	24072			HOEK.	386	9 45B	239	401 (m3)	Totalizer	
	OSC	500	501	920	285		-	0			5		7	K	0 906	10 2t	198				300	363	256	218	217			SER	366	593	2039	(m3)	lizer	근
	838KB	263777	17 7833	7835410	2833038	132 283	などに名	18508C	LSCBC		745866		3627375	95356-P	2 9256	3 28 2	28258			2821 61	28205	E980E8E		281829	712/83			988418C	717418E	BIPISC	2812657	402 (m3)	Totalizer	FLOW
	80	C		6	ř		00	ダ	174		太		75	4	52	191	20			685	~	3	77 (627	0			36	T	Š	572	13)	er	
401/402	401/402	403/402	401/402	401/402	401/402	401/402	401/402	401/402	401/402	401/402	407/402	401/402	401/402	401/402	401/402	401/402	401/402	401/402	401/402	401/402	401/402	401/402	407/402	401/402	401/402	401/402	401/402	401/402	401(402	401/402	401/402	Neactor	Running	
	PCI	טרו	161.6	169	187	118.7	1,7		T	4	14C									9-86 C		36	1.12		0.211			76	111			(W/m2)	-	Laı
	191	681	t 341	181	201	1663	36		CL	b	L									79.7		25	73.5		4.58			36	48			(W/m2)	2	Lamp Intensity
	LER	1718	701.3	415	234	8.071			8		200									91.7		400	5.08		136			88	96	-		(W/m2)	3	iity
	185	181	1531	251	186	11.17	7		65		65									21.8		67	£ 23		4.27			66	7			(W/m2)	UV SP	Dos
	436	RB12	3-93	404	4,19	3.86	4.10		61.17		96.H									4.24		EE.12	5.02		21.7			4.31	4.42			Log		osage
	200	43	96	-56	26	96	90		019		30				0	p	Ø			34.6	P	WX.	39	ф	1.35			38	38		φ:	(LPS)		Flow
	(1)	9.85	41.3	919	5.30	91.6	6.00		4		43.7				2.16	1.38	21.6			919	272	200	1.18	91.9	92.3			43.4	93.6		96.3	%		4
	7.1	100	7.5	7.6	7.8	6.0	r.		3.6		3.6									X X		36	3.6	A	3.8		•	8	3.8			(KWH)	Bank 1	Po
	F.S	1.1	6.1	4.1	2.15	2	96		à,		÷0									1.6		-70	1.0		1.8			ä	1.7			(KWH)	Bank 2	Power

June 2017

W																				П												D		
100				28	27 '	26		24	23			20	19			16	15	14	13	12		10	9	8	7		5	4	3	2	1 6	DAY		
CNE		0001	210	250	33		w.t.	6	128	1130	000	1200	140	145	Suco	とられ	2001	1130		440				145	545		0 0	160	0880	115	71100	TIME	2017	JUNE
		R3	50.	KS	833		Mode	New	KSS.	200	STE	202	7.7	7/5	710	63	223	503		8021				000	200		PIM.	Ja .	T	丁 名.	J.R.	Chk'd		
		POEESSK	2547525	SIEW-SE	536350		2526606	45208A 6	L.H.BISE	SE09156	E356136	9510057	508 9043	252250	2500737	CH586HR	111964	LISE LAF		こころのよ				0718CHE	LHOGLINE		24.71650	24/9972	2 4/8620	2867685	5759332	401 (m3)	Totalizer	FL
		Se 0016	2910 025	SCIC OF	SHRHOOLE		189881U	3895440	J892933	E889,585	SON SE	SOFFEE	2 58 1825	-5/28782	1425482	9656L86	335 CS	E98898E		576098c				07458E	105058E		-	28460	266657	2848502	8-931362	402 (m3)	Totalizer	FLOW
401/402	401/402	(401)/402	401/402	(401/402	401/402	(401/402	403/402	401/402	(401)402	401/402	401/402	401/402	401/402	401/402	401/402	401/402	401/402	401/402	401/402	401/402	401/402	401/402	401/402	401/402	403/402	401/402	(401)/402	401/402	401/402	401/402	401/402		Reactor	P
		165	1	300	105	-	发	182	131	162			190	135				1991		レー					135		135.7	1.9.5	123			(W/m2)	-	Lar
		111		169	E		181	47	1	Enl			125.5	241				XII		142					138		(36)	121	151			(W/m2)	2	Lamp Intensity
		010		010	916		222	234	- 54	F			211,1	164				-75		166					160		1989	179.7	178			(W/m2)	3	ilty
		100		163	105		153	137	1000	000			158.8	125				199		136					Sel		124,1	143	1630			(W/m2)	UV SP	Do
		4.01		200			4.24	4.51	4.0	200			30.3	50%				3.50		W. T. L.					HOH.		4,05	4.05	5.02			Log	Validated	Dosage
		S/S	4	200	000	00	7.4	J.	N S	0			00	85				00		23					400		82 7	1.18	38	\$	Ф	(LPS)		Flow
		NIC	372	3	000		4.4	7364	1.77	2			8,33	434	756			40.7		4		2			5.63		92.	3.16		3.16	3.13	%		TVU
		is	1	E			0.0	4					77	5.9				0-5		60					0.00		ハラ	2.0	6.0			(KWH)	Bank 1	Po
		- 1		7.13	-		4.	4.	5.0				7.7	3.0				4 X		00					30		7	500	83			(KWH)	Bank 2	Power

July 2017

August 2017

AL	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	з	2	_	DAY		
GUST	1030		1360	1510	lorlo	8:10	1030	1300	1250	1047	losso	6:30	3:70	10.30	WEG.	1100	430	5H24		900C		1105	530	50	1130	1255	(045	0000	1000	1000	1030	TIME	2017	AUGUST
	843	THE COURT	5.2	7.7.	71	7/-	J.R	JA.	5.2	77	M	MAR	HAN	7/-	2003	800	KB	ROB)	2003	J.K	7.1	BOB	30	イン	7.1.	5.1.	J. K.	J.L.	23	802	Chk'd		31
	85255L		2769236	2786919	2742721	17897	2736751	2734250	232282	223044	mose	284 SOLB	1905CEE	2721736	学るで	971516910	2719353	GEIDORE	The state of the s	91259LE	0 31002 2	2696 964	bear 1998	52-5859C	2688 332	1796892	262666	12677321	~	52.51.97R	ज़िक्टवनेटि ज़िक्टवनेटि	401 (m3)	Totalizer	FL
	greate		3/1500	3 16/538	7158024	3155589	3152226	1248715	3942985	3136142	3132038	3188112	3121511	3116606	BUILD	3108363	1255018	209797		3091031	3087080	3 084 641	LL91805	1 respec	5020953	3066174	3067183	3060 TX	3056 625	3054303	LEEP502	402 (m3)	Totalizer	FLOW
401/402	4017402	401/402	401/402	401/402	403/402	(401)402	£03/402	401/402)	403/402	407/402	401/402	(40)V402	(404)/402	401/402	(401)/402	401/402	401/402	401/402	401/402	401/402	401/402	401(402)	#01/402		401/402)	401/402	401/402	401/402	401/402/	403/402	401/402		Reactor	Dinania
	2.61	A. N W.			165	173	231	227.61	159.1	153.1	232	163	175.3		143	Soe	200	33:1	155	484	163.4	213	126	208	1.012	2.212	1213	9.771	150-8	154	541	(W/m2)	L	La
	193	1		2 - 2 - 2 - 2	195	203	191.1	111.7	179.8	128.7	165	80	143		187	167	163	132	757	159	193	171.6	158	893	120.8	179.7	126-9	206 (185.3	180	BLI	(W/m2)	2	Lamp Intensity
	281		4		183	188	180.6	202.0	125.5	671	203	179	911		158	199	198	941	146	951	183.7	200.5	193	202	2019	7.332	1.77	1.261	227.2	مر	SEE	(W/m2)	3	sity
	145		10		124	159	167.6	130.7	166.5	121	251	ES!	148		941	(4)	147	1114	114	162	150.5	153.5	447	150	5:351	7.031	226.5	(5)	175	137	138	(W/m2)	UV SP	D
	4.11		100		402	4.03	81.3	4.03	4.1	4.02	3.97	3.89	2.73	`	408	4.11	4.16	2017	4,03	3.93	20.7	4.17	40.17	1217	51.3	52.3	376	5.10	3.92	4-25	4.06	Log	Validated	Dosage
	13		9	0	38	56R	84.2	2 7	89	680	8	90	88	25	16	58	93	25	13	88	1-38	87	18	86	30.68	88	88	69	88	28	38	(LPS)		Flow
	8.13	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	128	21.5	58	97	1.20	2.78	91.9	8.13	288.6	5.88	5.38	7	8.38	4.12	93.3	93.9		89.2	513	91.3	0.15	12 th	90.9	418	8.13	91.3	8.18	94.5	6.65	%		TVU
	96				7.7	ング	7.4	7.7	7.5	3.5	7.7	7.7	7.4		7.5	7.8	イ・ト	0.0		7.4	2.5	8. 7	7.7	7)	7.8	7.9	7.7	1,5	メーシ	7:0	7.7	(KWH)	Bank 1	Po
	1		E. F.	1.0	しゃ	22	1.3	3.7	13	1.1	300	2.12	3,7		1.1	3.8	3.7	8.6		3.7	1.5	3.8	7.2	W)	5	3.8	2.2	6.1	3.6	4.1	الر	(KWH)	Bank 2	Power

September 2017

Recta	_					_	_							_	_	_					_	_	_	_	_	_			_	_			
SEPTE	30	29	28		26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	_	DAY		SE
MBER	3	16317	5101	050	8	1220	0381	1030	1130	1040	16, 7	0000	11.00	6.00		1315	0001	8	1445	1020	11:00	6:00	6:30	88		000	2,00	10:50	6:40	0051	TIME	2017	SEPTEMBER
	711	203	5.4.	5.0	5	ンス	7.6	ゴル	JL.	50	ンダン	5%	75	L		J.C	808	BB	J.R.		_	_	-H-	30		208		(Marri)	HAST	125	Chk'd	7	MBER
	282692	9085 CBC	2823692	2821816	S 858180	126 188	2815870	2816078	2811836		9 86 1087	2805-112	0 605.052			2796351	26.68bt	2511 BLE	92	877-5812	2783510	2781199	Lbh8112	OMBLIC		SENERICE	4860tt	91789948	OFFORE	514951E	401 (m3)	Totalizer	FL
	3245547	3243370	3251715	3539536	=	323/186		383/858	3 6303 86	3228962	35872 C	23	2201936		- 1	3215 171	3213893	1210471	2208667	2201059	320432	3201816	_	376352		3187480	8601818	881841E	4489418	अर्भाम्	402 (m3)	Totalizer	FLOW
401/402	401/402	401/402	401/402	401/402		401/402	401/402	401/402	401/402	401/402	401/402	401)402	401/402	403/402	401/402	(407/402	401/402	401/402	401/402	401/402	401/402	401/402	407/402	403/402	(401/402	401/402	401/402	401/402	401/402	401/402		Reactor	Pinning
			2612	235.5		163.5	1.43	2 36.3	1		212	151	7.7)	02/		153.4		500					166	156		930		211	156	الحد	(W/m2)	1	La
			162.5	6		196.9	130	160.0			911	1292	144.0	186		183.6		154					197	581		161		SH	183	C.91	(W/m2)	2	Lamp Intensity
			218.7	1.012		217.8	8 702	1.			141.0	1.00.4	221.0	187		205.3		002					222	016		200		140	124	800	(W/m2)	3	sity
			188.1	1:0.6		183.4	150.5	158.8			1286	160.5	163.3	133		181.5		CHI					157	138		941		7	144	1945	(W/m2)	UV SP	0
			5.10	5.19		4.2	4.01	16.5			5.10	30.3	4.2	5.99		4.11		4-00					- 1	4.30		41.7		26.2	4.8.2	1100	Log		Dosage
			84.2	85.6		81.8	3.78	5.88		φ	28	38	38	80		82.1		85	b	Ġ			118	4 9m		51.4		0	43	98	(LPS)		Elow
	28		97.1	8.16		915	91.2	41.4		912	818	91.1	518	90		5.18		5.00	818	9.10				60.2		13		N	1	1111	%		
	0.00		7.9	5.5		7.7	7.0	7.9			6 X	6	2.1	7.6		7.6		7.9					7.6	ر	-	2.5		_	7,4	79		Bank 1	Power
			3.8	5.5		4.1	3.8	3.0			29	4.1	6.1	1.4		4.1		w 80		*			4.1	4.1		\ \ \ \		25	4	S.	(KWH)	Bank 2	ver

October 2017

November 2017

NON	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	ω	2	_	DAY		
/EWBER		300	1040	0910	2160		Clos		0845	530	3641	1055	230	0/18	1215	88		1140				730		1200	1215	SH/	1050	1045		1:00	500	TIME	2017	NOVEMBER
		200	7.0	J. P.	J.R.		800		7.1	000	5.0	1	PING	Mex	26	S S		T.d.				503		PM	MG	Md	2.5	2,00		7.5	808	Chk'd	7	BER
		191868	1361262	2871 171	2869667		Ser. 30			Sherse	2866248	2865498	2864420 32856	_	2863095	598E98E		2860810				C800 98t		2857703	4687582		2856205	2855976		2884892	558E58E	401 (m3)	Totalizer	FL
		1651628	3291387	3290359	2810186		9013-8el.			C141 865		3286 213	3285619	3285378	2584 €14	3283737		3283150				39793C			_		129722C	32 75561		25 25392	1998LEE	402 (m3)	Totalizer	FLOW
401/402	401/402	401/402	401/402	401/402	401/402	401/402	401/402	401/402	401/402	401/402	401/402	401/402	40 1/402	401/402	401/402	401/402	401/402	401/402	401/402	401/402	401/402	401/402	401/402	403/402	401/402	401/402	401/402	401/402	401/402	401/402	401/402		Reactor	Dunning
		1986	8.211	92.9	8.201								59			98						132		9.80			85.3					(W/m2)	1	La
			5. 8t	63.6	75.5								2F			89						201		80.1			65.5						2	Lamp Intensity
			168.7	90.9	1639								83			194						941		116.6			114.8					(W/m2) (W/m2)	3	sity
			69.5	50.3	4.99								50			66						× ×	-	64,7			6.3					(W/m2)	UV SP	D
			12.24	3.97	6.13							1	4.16			のなが	4.00					439		86.8			40.2					Log	Validated	Dosage
			36	28	39				Þ		b	P	37		ь	200		ø				w w		39			39	ф		Ó		(LPS)		Flow
			91.5	91,4	91.6				91.3		91.6	92.1	2,50	34.5	8.16	4.14		7.16				7.33		98.1	000	89.2	41.2	2.10		276		%		
			23	3,0	44							- 1	3.6			ניים						200					23					(KWH)	Bank 1	Po
			2.5	7,4	2.7								No.			20						الر					2						Bank 2	Power

December 2017

D	ECEMI		FL	ow		Lai	np Intens	sity	D	osage	Flow	UVT	Po	wer
DAY	Z017	Chk'd	Totalizer 401 (m3)	Totalizer 402 (m3)	Running Reactor	1 (W/m2)	2 (W/m2)	3 (W/m2)	UV SP (W/m2)	Validated Log	(LPS)	%	Bank 1 (KWH)	Bank 2 (KWH)
1	1315	J.D.	2874055	3291629	401/402					Market Street Street Street	0	91.4		Marc Cold President
2	guys	TE		3291862	401/402							89.8		
3	800	71-	2874783		401/402							39. /		
4	1000	J. C.		3294100	401/402	62.1	68.9	82.6	60.1	3.88	40	91.3	3,6	1.8
5	-0940				401/402									
6	0940	J. C.	2877074	3 294 585	401/402						0	91.6		
7					401/402									
8	936	803	387 1531	3296313	401/402	62	68	81	60	3.89	37	903	3.6	4.9
9		100			401/402						-			
10					401/402									
11	1110	J. L.	2877871	3 299 716	(401)/402	79.6	91.5	132.0	67.2	4.17	38	91.6	4.3	2.0
12	0830	J.R.		3 300 897	(401/402	59.0	71.9	792	55.2	3.94	39	92.1	3.6	1.8
13	1435	J.R.	2 878 703	3301162	(401/402	65.2	81.5	116.8	63.5	3.93	40	91.3	82	6.6
14					401/402									
15	1000	RIB	1881280	3301358	401/402	69	87	130	64	4.03	39	91,3	4.2	2.6
16	arterille Missahatessan				401/402						-			
17					401/402									
18	1110	J. L.	2813 355	3302 806	401/402)	103	71	137.6	65.6	4.15	39	96.1	4.3	6.5
19	930	ENG	333399	3303884	(401/402	105	133	156	88	4.48	38	600	58	3.0
20				340-20	401/402						and the same and t			
21	1000	丁. 九	2883873	3305766	401/402						0	91.4		
22	1220	J. 1.	2855566	3 3 85 766	401/402					***************************************	0	91.6		
23	16-0	ROS	2846336	3306601	403/402	101	134	153	86	4.46	39	913	5.8	3.0
24		1	-436370	1000	401/402									
25	8145	TIF	2887945	3307056	401/402							91.4		
26	8,50	-71=	7889188	3307728	401/402	105	74	138	67	4,141	39	918	4.3	2.5
27	11:00	25	2888435	3309176	401/402		fr				-	91.4		
28	14140	2-5	7888435	3310800	401/402		THE TALL					91.8		
29	7100	2-5	7884/80	33/0800	401/402	4.						91.7		
30	1250	2-5	2888429	3312606	401/402	- 1- 1-				_		97		
31	150	71	2885929	3314306	401/402					_	0	91.2		
-	MBER	2.2	2003 12 /	2306	401/402			,						
and the balls												-		A

Appendix I – Environmental Operators Certification Program (EOCP)

The EOCP Board of Directors, with the approval of the Ministry of Health, recently changed the water treatment facility definition. As such, since our chlorination facilities are method of *primary disinfection*, to produce potable water, they are now classified as water treatment facilities.

According to the <u>EOCP</u> Primary disinfection can include chlorination and ultraviolet of with we utilize alone or combined in our facilities. With this new definition, Operators are now required to update their certification to include water treatment. With the EOCP and Ministry of Health changing our facility classifications to Water Treatment facilities, Section 12 of the BC Drinking Water Protection Regulation requires that our operators now must now also obtain Water Treatment Certification through the EOCP. This was an unexpected expense and time allocation; not all operators were in approved in 2016 to obtain certification. All operators now are also required to accumulate operator experience toward Water Distribution and Water Treatment certification.

Name	Certification No.	Level
Mike Mitchell	1839	WD-IV, CH, WT-I
Rob Witzke	1841	WD-II, CH
Patti Meger	4838	WT-I, CH, WD-I, T-I
Kiel Wilkie	6503	WD-III, CH
Tyler Friedrich	7697	WD-II, WT-I
Julius Rideg	6827	WD-I, CH, MWWT-OIT, WT-I
Mike Kristensen	8344	WD-I, WT-I