

Water Operations 2018 Annual Report

10150 Bottom Wood Lake Road Lake Country, British Columbia V4V 2M1 Ph: 250-766-6677 Fax: 250-766-0200 lakecountry.bc.ca

LAKE COUNTRY

DISTRICT OF LAKE COUNTRY Water Operations Annual Report - 2018

Prepared For: INTERIOR HEALTH AUTHORITY 1440 – 14th Avenue Vernon, BC V1B 2T1

Prepared By:

Patti Meger, Water Quality Technician

Tessa Luison, Utility Operator 1

Reviewed By:

Kiel Wilkie, Engineering Tech II

Mike Mitchell, Utility Superintendent

District of Lake Country Table of Contents

WATER OPERATIONS	5
2018 Overview	5
Systems Descriptions and Classification	5
Water Demands	5
Water Sources	6
2018 Snow Pack	8
2018 Flooding	8
Vernon Creek Intake 2017 Flood Repair	9
Cross Connection Control Program (CCCP)	10
Annual Operations Summary	10
Dam Inspections	10
Reservoir Cleaning	11
2018 Capital Project Highlights Reimche Rd Bridge Eldorado Treated Reservoir and Glenmore Booster Kalamalka Lake Pump House Backup Power Installation	
Emergency Response Plan	12
WATER QUALITY	13
Water Chemistry background	13
Bacteriological Background	
Okanagan Laka Source	
Okallagali Lake Source	
Oyama Lake Source	
Kalamaika Lake Source	
Coral Beach Water System Lake Pine Water System	
Water Quality Advisory and Boil Water Notice	21
Service Disruptions	22
Trihalomethanes (THM's)	22
Instrument Calibration and Quality Control	25
Giardia Performance Monitoring: CT calculations	26

District of Lake Country	2018 Water Operations Annual Report
Beaver Lake Source	
SOURCE SAMPLING (RAW WATER)	
Raw Water Reservoirs/Intakes	
WATERSHED MANAGEMENT	
Watershed Source Water Assessment Plans:	
Range Management	
Forestry	
WILDFIRE PLANNING:	
APPENDICES	
Appendix A – Summary of Positive Bacteriological Results in D	istribution41
Appendix B – District of Lake Country Sampling Sites	
Appendix C – 2018 Giardia Performance Monitoring	45
Appendix D – Comprehensive Test Results	46
Appendix E – Nutrient Sampling Upland Drinking Water Reserv	voirs50
Appendix F – Beaver Lake & Oyama Lake Levels and Discharge	54
Appendix G – Drought Forecast for Beaver Lake & Oyama Lake	956
Appendix H – Kalamalka UV Station log Sheets	
Appendix I – Environmental Operators Certification Program (EOCP)

Water Operations

2018 Overview

The following is intended to inform and summarize 2018 data collections, observations, and work completed by District of Lake Country staff with regards to water operations and water quality.

Water operations highlights include:

- Eldorado Treated Reservoir Construction
- Glenmore Booster Station Construction
- Flooding restoration Works and Repair Vernon Creek Intake
- Reimche Road Bridge Replacement and Water Line Extension

Systems Descriptions and Classification

The District of Lake Country is a growing municipality with an approximate population of 14,000 people. Not all 14,000 residents are connected to the District's public water systems. The primary upland sources used by the District include Beaver Lake, Crooked Lake, Oyama Lake, and Damer Lake. The lower elevation water sources are Okanagan Lake (3 separate intakes) and Kalamalka Lake.

Infrastructure within the District owned water systems includes 6 storage dams, 10 reservoirs, 6 chlorine injection systems, 9 pump houses, 4 pressure boosting stations, 36 pressure reducing stations, 79 pressure reducing valves, more than 400 hydrants, and approximately 200 km of water distribution mains.

Water Demands

Each water source within the District has varying levels of consumption demand. Factors that impact demand are the total number of connections to the water system and the type of water connection. Residential, commercial, industrial, institutional, seasonal irrigation and agricultural connections are all different types of customers connected to the different water systems. Total water use among the sources and water systems in 2018 was 7,645,516 cubic meters (see Figure 1 for water consumption by source). Water demands in 2018 were the lowest in the previous decade. The District largely attributes this to the universal metering program, which was fully implemented by 2017.

Each spring Beaver and Oyama Lake have increased particulates in the water from spring freshet. Most spring the particulate in the water gets to a level that if used, the District would need to issue a boil water advisory. During these times the water operations staff will supplement the Beaver and Oyama Lake sources Okanagan or Kalamalka Lake water. This operational change leads to increased demands on those sources.

Figure 1. 2018 DLC water demands from each source reported as cubic meters per month. Zero demand on the Oyama lake source is due to the District supplementing the Oyama lake source with the Kalamalka lake source in low consumption months.

Water Sources

District of Lake Country

The District uses and monitors four separate water sources:

- 1. Beaver Lake (Crooked Lake chain flows into Beaver Lake)
- 2. Oyama Lake (Damer Lake flows into Oyama Creek)
- 3. Okanagan Lake
- 4. Kalamalka Lake

To review a water source area map, go to:

<u>www.lakecountry.bc.ca/utilities</u> \rightarrow Click Water \rightarrow then Water Source Map

District of Lake Country 2018 Water Operations Annual Report

Left: Crooked Lake dam spillway Right: Oyama Lake dam spillway.

Left: Eldorado drinking water reservoir Right: Vernon Creek Intake

See Appendix F & G for 2018 Oyama and Beaver Lake level and Discharge and Drought Management Graphs

2018 Snow Pack

The Oyama Lake snow pack for 2018 was an abnormally high. The end of March measurement was 146% above average. To see the historical snow survey data for Oyama Lake please visit the <u>BC River Forecast</u> <u>Centers website</u>, under manual snow survey data, number 2F19.

Figure 2. 2018 Oyama Lake Snow Pack

2018 Flooding

Due to the abnormally high snow pack the 2018 freshet had the potential to cause serious flooding issues for the District. The District water operations staff began releasing water from the upland reservoirs in early March to make room for the large snow pack. When the snow freshet did occur, it did not create the same creek flooding issues that were experienced in 2017. The District largely attributes this to the lowering the upland reservoir and favorable weather conditions.

A State of Local Emergency still did go into effect on May 15th. This State of Local Emergency was instated through the Regional District of Central Okanagan as the Province predicted high flows and potentially high lake levels similar to 2017. Protective sandbag dams were constructed around vulnerable District water intakes on Okanagan Lake. Okanagan Lake reached 0.2 meters above full pool but did not flood to the same levels as 2017. The State of Local Emergency was rescinded June 5th.

Vernon Creek Intake 2017 Flood Repair

During the 2017 floods, rapid snow melt and heavy rain caused abnormally high creek flows which carried large amounts of debris and sediment into the Vernon Creek intake pond. This resulted in the pond being limited to approximately 50% capacity.

In January of 2018 restoration of the intake began. During this work, it was determined that the creek bypass pipe was damaged beyond repair. Over the month of January the intake was cleared of over 22,000 cubic metres (1,500 dump truck loads) of material, and the bypass pipe was replaced.

2017 Flooding of the Vernon Creek Intake Pond

Left: Pumps de-watering the intake pond

Right: Hydro-vac excavation of the intake drain box

Cross Connection Control Program (CCCP)

From 2014 to 2016 all seasonal and agricultural irrigation connections were equipped with backflow prevention valves (over 500 backflow prevention valves). The number of residential customers with backflow prevention valves has increased drastically since 2015 due to an increase in the number of residential fire suppression sprinkler systems installed in new construction.

All new construction and new business are required to meet or exceed District regulations related to Cross Connection Control. In 2019 a review of all existing businesses will be conducted and on-site inspections will take place if warranted.

Table 1. Status of cross connection control program noting the severity of hazards and the number of thosethat were surveyed as being compliant.

Hazards	Quantity	Not Surveyed	Surveyed	Vacant	Compliant
High	33	0	33	0	33
Medium	88	12	76	0	69
Low	61	7	54	0	43
None	8	8	0	5	0
Totals	190	27	163	5	145

*Note this table is only representative of industrial, intuitional, and commercial customers. The table does not include residential, seasonal irrigation, and agricultural irrigation customers.

Annual Operations Summary

Annual operational duties that are completed by District staff:

- Service installation and repairs
- Collection and analysis of water sampling
- Upland dam inspections
- Maintain and clean all reservoir, chlorination, and pumping facilities
- Water main flushing
- Air valve maintenance
- Dam Inspections

Inspections of Upland Dams (Beaver, Crooked, Oyama, and Damer) are completed by the District daily when the water levels are high. Weekly inspections occur when water levels return to normal. Inspection reports are filled out at the time of each inspection.

Recently it has been brought to our attention that the outlet control structure at Beaver Lake dam is in need of repair. District staff is working with different engineering firms to determine a solution.

- Pressure reducing valve maintenance
- Hydrant maintenance
- Line valve maintenance
- Main line leak repairs
- Seasonal irrigation turn on & off
- Respond to customer complaints and inquiries

Reservoir Cleaning

The District uses a diving company to conduct reservoir inspections with an ROV unit as needed. In some instances, the District also uses divers to clean the reservoirs. When using a diver is not possible, the District operations crew will drain and clean the reservoir.

In 2018 Kalamalka Lake Reservoir, Okanagan Lake Reservoir, the Upper and Lower Lakes Reservoirs, and the Upper and Lower Lake Pine Reservoirs were inspected. District staff drained, cleaned, and inspected the Coral Beach reservoir. There were no issues of note for any inspection or cleaning.

2018 Capital Project Highlights

Reimche Rd Bridge

In August 2018 the District of Lake Country built an arched culvert bridge over Middle Vernon Creek on Reimche Rd. The original bridge was failing and in need of replacement. When the old bridge structure was removed, the District took this opportunity to extend the water main on Reimche Road. The District extended the 200mm PVC water main on to the east side of Middle Vernon Creek, using 200mm HDPE pipe for the creek crossing.

Eldorado Treated Reservoir and Glenmore Booster

In 2018 the District completed construction of the Eldorado Treated Water Reservoir and Glenmore Booster Station Project. This project consists of three new key infrastructure components:

- 1. 6,000 Cubic Metre Treated Water Reservoir that:
 - Provides greater time for chlorine to react and disinfect water prior to entering the distribution system
 - Provides greater storage for fire protection
 - Provides a clear water storage tank for future water treatment facility
- 2. Low Lift Booster Station that:
 - Conveys water from the raw water balancing reservoir to the new treated water reservoir

Piping being installed to new Treated Water Reservoir

- 3. Glenmore Booster Station that:
 - Replaces an existing undersized booster station
 - Interconnects the Beaver Lake water source and the Okanagan Lake water source, allowing District staff to use either source in both systems as needed

Kalamalka Lake Pump House Backup Power Installation

In 2018 the District installed a 200kW backup power generator at the Kalamalka Lake pump house in Oyama. In the event of a long term power outage, this project ensures that water is available to approximately 600 Oyama area customers for normal use and fire protection.

Emergency Response Plan

The DLC has an Emergency Response Plan that is updated annually (or more often as required). This report is separate from the Annual Water Operations Report. Both the Emergeny Response Plan and Annual Water Operations Report are provided to IHA annually.

Water Chemistry background

This section provides a review of the water quality testing performed in 2017 for the District of Lake Country's (DLC) water sources. Overall bacteriological and water chemistry results show that the majority of samples meet the <u>Guidelines for Canadian</u> <u>Drinking Water Quality</u> (GCDWQ); however, some parameters exceeded the maximum acceptable concentrations. The District's two main upland drinking water reservoirs (Beaver and Oyama Lake) and their creek sources where our intakes are located (Vernon and Oyama Creek) exceeded the <u>GCDWQ</u> for colour and turbidity. Both Beaver and Oyama sources exceeded the THM guidelines. Such results are common throughout the Okanagan wherever water is sourced from highland watersheds.

Source water from these watersheds is high in organic matter which causes colour issues and elevated disinfectant by-products. Turbidity is naturally occurring in some areas and can be compounded by

Vernon Creek covered in snow.

human activities that occur above our intakes, such as recreation, cattle ranching and logging. The DLC is working towards treatment (as outlined in our <u>Water Master Plan</u>) and at present our primary form of disinfection is chlorination.

Water purveyors are responsible for providing potable water to their users under the <u>BC's Drinking Water</u> <u>Protection Act</u>. In November 2012 the Province released version 1.1 for Drinking Water Treatment Objective (microbiological) for surface water supplies in British Columbia (<u>BC Drinking water objectives</u>). The <u>BC Drinking water objectives</u> provide an overview of the *framework towards achieving goals for drinking water treatment of pathogens in surface water supply systems in BC and for a general reference for assessing progress towards updating or improving existing water supply systems*. This general overview was developed using the <u>BC's Drinking Water Protection Act</u>, the <u>Drinking Water Protection Regulation</u>, and objectives in the <u>GCDWQ</u>. It will be used as a general reference for assessing progress towards updating or improving existing water supply systems. The treatment objectives ensure the provision of microbiologically-safe drinking water. It provides minimum performance target for water suppliers to treat water to produce microbiologically-safe drinking water. This continues to follow the 4-3-2-1-0 treatment objectives:

- 4-log (99.99 percent) inactivation and/or removal of viruses,
- 3-log (99.9 percent) inactivation and/or removal of Giardia and Cryptosporidia,
- Two treatment processes for surface water
- Less than or equal to one nephelometric turbidity until (NTU) of turbidity
- No detectable E.coli, fecal coliform and total coliforms

2018 Water Operations Annual Report

Water Master Plan concept promotional marketing (above)

The District has addressed these concerns in our <u>Water Master Plan</u> and we remain in discussions with IHA regarding the implementation and challenges of meeting these requirements; further details page 12 Capital Works.

The DLC's distribution sites are monitored throughout the year for water chemistry (free and total chlorine, turbidity, temperature, pH and conductivity), and for the presence of bacteria (total coliforms and E.coli).

Chlorine is the disinfectant used for all of the District sources. Free and total chlorine are measured to ensure a residual is maintained throughout the distribution systems. The Kalamalka Lake source also utilizes ultraviolet water treatment radiation as a secondary form of disinfection. Ultraviolet operations log sheets are contained in Appendix H.

Turbidity (a measure of the amount of particulate matter suspended in water) can harbour microorganisms, protecting them from disinfection, therefore increasing the chlorine demand. In the Canadian Drinking Water Guideline (<u>GCDWQ</u>) the maximum allowable concentration for turbidity in water distribution systems has been set at 1 NTU.

Temperature and pH affect the strength of the disinfectant. The potable water temperature should be less than 15 °C for palatability and to inhibit growth of nuisance organisms. <u>GCDWQ</u> for pH ranges between 7.0 and 10.5.

The pH is the measure of acidity or basicity of an aqueous solution. It is an Operational Guideline (OG) now set at 7.0- 10.5 in finished water (prior to 2017 was 6.5-8.5). pH is important to maximize treatment effectiveness, control corrosion and reduce leaching from distribution system and plumbing components <u>CDWQG</u>.

Conductivity (the ability of an aqueous solution to carry an electrical current) is used as a quick indicator of changes occurring in the natural waters.

Colour creates high disinfectant demands and is an indicator of potential increased dissolved organic matter which, when combined with chlorine, forms disinfectant by-products. There is no GCDWQ for apparent colour however the aesthetic objective in the GCDWQ for true colour is <15 TCU.

Bacteriological Background

The District of Lake Country (DLC) in cooperation with the Interior Health Authority, Okanagan Service Area (IHA) has developed a Water Quality Monitoring and Reporting Plan. It includes the criteria set by the Province to ensure standards for the monitoring the delivery of safe drinking water are being met. The bacteriological water quality monitoring requirements that DLC follows measure against the Guidelines for Canadian Drinking Water Quality (GCDWQ) and the Drinking Water Protection Act (DWPA) and Regulations (DWPR). Drinking water samples are collected on a weekly basis within each DLC Water System. Each water source is monitored for physical, chemical, and biological parameters. All membrane filtration microbiological samples are sent to an accredited and licensed laboratory for analysis. Additionally, samples are analyzed 'in-house' with Presence-Absence tests (P/A) for further measurement against the GCDWQ and for use in assessing trends, standards and emerging issues. The required numbers of monthly samples are detailed in the DWPR Schedule B (Table 2) and the District of Lake Country Water Quality and Monitoring Plan; Frequency of Monthly bacteriological tests (Table 3). All weekly Total coliform and E.coli results from raw water sources and throughout the distribution system (this includes both membrane filtration and Presence-Absence) are compiled and submitted to the Drinking Water Officer assigned to DLC, Coral Beach and Lake Pine water systems. Results that do not meet the water guality standards in the DWPR, Schedule A (Table 4) are immediately reported to the Drinking Water Officer.

Population Served by the Prescribed Water Supply System:	# Samples per month:
less than 5,000	4
5,000 to 90,000	1 per 1,000 of population
more than 90,000	90 plus 1 per 10,000 of population in excess of 90,000

Table 2: Schedule B – Frequency of Monitoring Samples for Prescribed Water Supply Systems (section 8).

Table 3: Frequency of Monthly bacteriological tests: Membrane Filtration (MF) and Presence-Absence (P/A)

System/Source	MF Distribution # samples required per mo.	MF Raw Water # samples recommended per mo.	P/A	Total MF Distribution and Raw	Distribution Bacteriological/ Chlorine test sites:
DLC Water System: Beaver Lake source : Est. Population 4,000	4	4	2	8	15*
DLC Water System: Okanagan Lake source : Est. Population: 4,000	4	4	2	8	11**
DLC Water System: Oyama Lake source: Est. Population 636	4	4	2	8	6
DLC Water System: Kalamalka Lake source: Est Population 614	4	4	2	8	5
Coral Beach Water System: Okanagan Lake source Est Population 124	4	4	2	8	2
Lake Pine Water System: Okanagan Lake source Est Population 173	4	4	2	8	4**
*includes Camp Rd. Reservoir (offlin **includes at least 2 reservoirs	e until required)				

Table 4: Schedule A - Water Quality Standards for Potable Water (sections 2 and 9) DWPR

Parameter:	Standard:
Escherichia coli (E.coli)	No detectable Escherichia coli (E.coli) per 100 ml
Total coliform bacteria:	
(a) 1 sample in a 30 day period	No detectable total coliform bacteria per 100 ml
(b) more than 1 sample in a 30 day period	At least 90% of samples have no detectable total coliform bacteria per 100 ml and no sample has more than 10 total coliform bacteria per 100 ml

Coliform bacteria are naturally occurring in the environment and generally are not harmful. However, their presence is an indicator for the presence of other types of disease-causing organisms. The presence of these bacteria is a sign that there may be problems with the water treatment, or the water distribution system.

Escherichia coli, (E.coli) are a bacterium that is always present in the intestines of humans and other animals and whose presence in drinking water would indicate fecal contamination of the water. Most strains of E.coli do not cause illness in healthy humans, although some strains do cause cramps and diarrhea. One particular strain named O157:H7 produces a powerful toxin that can cause severe illness. The maximum acceptable concentration (MAC) of *E.coli* in public, semi-public, and private drinking water systems is zero detectable per 100 mL.

2018 Water Operations Annual Report

At the time the samples are analyzed, the lab estimates the general bacterial population from background colony counts. Background bacteria are used as a general measure of the bacterial population present in a drinking water system or in the raw source water. Under ideal growth conditions, the background bacteria may increase and are indicators of the potential growth of coliforms. Initial counts are not reportable under our Permit to Operate. However, in order to identify problem areas and in aiming to provide good water quality within the distribution systems, all events are recorded and reported with follow-up sampling and, when necessary, flushing to provide fresh water to the site. In 2018 237 MF bacteriological samples were collected and analyzed at Caro Environmental Labs in Kelowna for total coliforms and E.coli. Additionally 142 P/A tests were analyzed (in-house). The P/A tests determine if total coliforms are present or absent from the sample but do not provide counts should the test be positive. P/A tests are collected on alternate weeks from the MF samples. The P/A tests provide quick feedback on the bacteriological quality of the water during the week that MF samples are not collected. Should a P/A be positive, additional bacteriological testing and further water chemistry testing occurs. At no time was E.coli detected in any DLC distribution systems.

In 2018 no samples were positive for Total Coliforms or E.coli. Appendix A contains a summary of the total bacteriological tests collected in each water system and overall.

For all sources, any water chemistry parameters that are recorded daily through supervisory control and data acquisition (SCADA) and are not included in the data below. SCADA information is reported monthly to IHA in the web posted Monthly Water Quality reports. The monitoring of source and distribution water is conducted weekly, rotating sampling through all sites as set out in the District of Lake Country Water Quality Monitoring and Reporting Plan.

Distribution water quality results are in tables 5 -10 below for District of Lake Country Water System. The list of sample sites for each distribution system is located in Appendix B.

Beaver Lake Source

Table 5. 2018 Annual Distribution Water Chemistry Results: District of Lake Country Water System; Beaver Lake Source (All data reported from weekly water quality monitoring using hand-held equipment). It should be noted that occasionally the distribution water sampled is a mixture of both sources (Okanagan Lake mixed into Beaver distribution) and variation from the norm occurs within the data.

	Chlorine mg/L	Chlorine mg/L	NTU	Temp °C	рН	Conductivity µS/cm
MIN	0.08	0.25	0.46	4	6.3	46
MAX	7.20	3.34	1.7	18	7.7	133
AVERAGE	1.51	1.60	0.91	13	6.9	85
WQ Guidelines				15	7.0- 10.5	
Aesthetic objective (AO)			<i>1 (max)</i> ≤ 5 NTU AO	AO	ΑΟ	

Water chemistry equipment (residual chlorine and turbidity meters) at Eldorado Balancing Reservoir

Okanagan Lake Source

Table 6. 2018 Annual Distribution Water Chemistry Results: District of Lake Country Water System; Okanagan Lake Source (All data reported from weekly water quality monitoring using hand-held equipment). It should be noted that there was one occasion where the distribution water sampled is a mixture of both sources (Beaver (Vernon Creek) source water) in the Okanagan Lake lines due to the June 25th power outage at Okanagan Lake Pump house. On June 26th Okanagan Lake Source water was again restored through the lines and normal operations resumed.

	Chlorine mg/L	Chlorine mg/L	NTU	Temp °C	рН	Conductivity µS/cm
MIN	0.32	0.49	0.22	3	7.2	142
MAX	2.88	2.16	3.50	18	8.3	329
AVERAGE	1.09	1.27	0.51	8	8.0	293
WQ Guidelines				15	7.0-10.5	
			1 (max)			
Aesthetic objective			≤ 5 NTU			
(AO)			AO	AO	AO	

Oyama Lake Source

Table 7. 2018 Annual Distribution Water Chemistry Results: District of Lake Country Water System; Oyama Lake Source (All data reported from weekly water quality monitoring using hand-held equipment). Occasionally the distribution water sampled is a mixture of both sources (Oyama Lake and Kalamalka Lake) and variation from the norm occurs within the data. Oyama water source off line approximately May 12 – October 15th (mixing of sources in the Oyama reservoir occurs for a short time following the switch).

	Chlorine mg/L	Chlorine mg/L	NTU	Temp °C	рН	Conductivity µS/cm
MIN	0.23	0.43	0.40	7	5.5	50
MAX	5.30	4.20	3.70	21	7.0	199
AVERAGE	2.33	2.42	0.85	14	6.5	64
WQ Guidelines				15	7.0-10.5	
			1 (max)			
Aesthetic objective			≤ 5 NTU			
(AO)			AO	AO	AO	

Kalamalka Lake Source

Table 8. 2018 Annual Distribution Water Chemistry Results: District of Lake Country Water System; Kalamalka Lake Source (All data reported from weekly water quality monitoring using hand-held equipment). Occasionally the distribution water sampled is a mixture of both sources (Oyama Lake and Kalamalka Lake) and variation from the norm occurs within the data (i.e. Kalamalka Lake water in Oyama distribution lines and not the reverse).

	Chlorine mg/L	Chlorine mg/L	NTU	Temp °C	рН	Conductivity µS/cm
MIN	0.02	0.14	0.30	3	7.2	234
MAX	3.00	3.26	1.2	16	8.4	432
AVERAGE	1.24	1.46	0.71	9	8.1	402
WQ Guidelines				15	7.0-10.5	
			1 (max)			
Aesthetic objective			≤ 5 NTU			
(AO)			AO	AO	AO	

Coral Beach Water System

Table 9. 2018 Annual Distribution Water Chemistry Results: Coral Beach Water System; Okanagan LakeSource (All data reported from weekly water quality monitoring using hand-held equipment).

	Chlorine	Chlorine	NTU	Temp °C	рН	Conductivity μS/cm
	mg/L	mg/L				
MIN	0.50	0.65	0.21	5	7.8	283
MAX	3.60	3.82	3.10	14	8.4	543
AVERAGE	1.45	1.64	0.73	9	8.0	320
WQ Guidelines				15	7.0-10.5	
			1 (max)			
Aesthetic objective			≤ 5 NTU			
(AO)			AO	AO	AO	

Lake Pine Water System

Table 10. 2018 Annual Distribution Water Chemistry Results: Lake Pine Water System; Okanagan Lake Source (All data reported from weekly water quality monitoring using hand-held equipment).

	Chlorine mg/L	Chlorine mg/L	NTU	Temp °C	рН	Conductivity µS/cm
MIN	0.15	0.29	0.23	3.8	7.7	300
MAX	2.60	3.10	0.94	16	8.5	450
AVERAGE	1.33	1.53	0.42	9	7.9	345
WQ Guidelines				15	7.0-10.5	
			1 (max)			
Aesthetic objective			≤ 5 NTU			
(AO)			AO	AO	AO	

Distribution water quality can vary for numerous reasons. These include: seasonal changes to water demand, timing of sampling following system flushing or use of hydrant, or mixing of water sources. The last circumstance is only applicable to Beaver/Okanagan Lake customers and Oyama/Kalamalka Lake customers. Under normal operating procedures Beaver Lake and Okanagan Lake sources do not mix. However, should Beaver Lake source water experience an undesirable water quality event (i.e. high turbidity that occurs during freshet), and if the system demands are within an operational range, we will supplement or switch Beaver Lake source customers with Okanagan Lake water. For customers on the Oyama source this is now year four that Kalamalka Lake source has been the primary supply during the non-irrigation season (approximately October through May). Under normal daily operating conditions, at no time are the Beaver or Oyama sources mixed into Okanagan or Kalamalka source distribution systems. If this were ever to occur it would be under a water emergency situation with the appropriate Water Quality Advisory Notification issued.

It is not unusual in any of the distribution systems for free chlorine to read trace levels at dead ends or through low use areas. The Beaver, Okanagan and Lake Pine distributions all had samples of less than 0.20 ppm free chlorine. The free and total chlorine levels are closely monitored and if chlorine levels are low or turbidity is elevated, chlorine dosing may be increased and/or flushing of distribution lines may occur. Follow-up sampling confirms residuals and turbidity levels.

2018 Water Operations Annual Report

In 2017 the <u>GCDWQ</u> changed and the Aesthetic Objectives of pH were changed from 6.5-8.5 to 7.0-10.5. The Beaver and Oyama sources regularly did not meet these objectives whereas the deep water intakes on Okanagan and Kalamalka were generally within this range. Temperature on all systems fluctuates with weather and raw water conditions. All systems (other than Coral Beach) at some point had at least one sample that was at or above the aesthetic temperature guidelines. Overall averages on all systems were well under the 15 degrees guidelines.

Water Quality Advisory and Boil Water Notice

The following sources throughout 2018 were on a Water Quality Advisory (WQA):

- Beaver Lake (District of Lake Country Water System)
- Oyama Lake (District of Lake Country Water System) (Oyama source Off-line May 12 October 15)
- Okanagan Lake Source (On June 25th and rescinded June 26th) due to power outage and emergency temporary switch to Beaver Lake Source

The advisories on Beaver and Oyama Sources will remain in effect until infrastructure upgrades are made to improve water quality and reliability.

Notice to customers on the Oyama and Beaver sources as to when their water supplies will be switched over or supplemented with an alternate water source of better water quality does not occur. The DLC will continue to supply customers with the best water quality possible and normal operations includes the switching and supplementation of alternate sources to optimize water quality. WQA Reminder notifications are sent to customers on their water bills, it is permanently posted on our web and is publicized on various occasions in our local newspaper paper (The View) and DLC social media. In a situation where there is a higher water quality event, such as a Boil Water Notice, customers would be notified as per the IHA approved Potable Water Supply Emergency Response Plan for the DLC.

On June 25th a power outage occurred at the Okanagan Lake Pumphouse following an intense storm event. Until Fortis was able to restore power, an emergency and temporary water supply from the Beaver Lake was supplied to the Okanagan Lake customers. Customers on the Okanagan Lake water supply were then on an immediate Water Quality Advisory. The power was returned late that night; however, prior to removing the WQA, the reservoir went through numerous cycles using the Okanagan Lake water. System checks the following day also showed Okanagan Lake was through the distribution and water quality was good. On June 26th morning customers normally receiving the Okanagan Lake source were back to normal service.

In June 2017, IHA released a report as part of public awareness campaign called Drinking Water in Interior Health. It is an "Assessment of Drinking Water Systems, Risks to Public Health, and Recommendations for Improvement." (January 2017). The Chief Medical Health officer, Dr. Corneil, advises that "This report should be viewed as an opportunity to renew and rejuvenate conversations between drinking water officers, water supply managers, municipal leaders, and members of the community," and is "An opportunity to ensure we are moving forward, together, towards a common goal: access to clean, safe, and reliable tap water for all people at all times."

For the DLC we will continue our communications with IHA as we work towards achieving goals in our Water Master Plan and look forward to learning more about IHA's public awareness campaign. Currently IHA has developed a series of educational videos providing information on how the water systems work, how water is treated, and what safety issues the community should be aware of.

2018 Water Operations Annual Report

As with the 2006 Turbidity Notification Campaign, IHA maintains the requirement of purveyors to issue a Water Quality Advisory when turbidity exceeds 1 NTU and to contact Interior Health as the turbidity approaches 5 NTU to discuss enhanced notification (i.e. a Boil Water Notice). Reminder notifications are sent to customers annually through water bill inserts as well as posted on the DLC web page and through our social media and local paper as required. Regardless whether a source is on an Advisory or not, the distribution systems on all sources are regularly monitored as per the IHA approved Water Quality Monitoring and Reporting Plan.

Service Disruptions

Under normal operating conditions many water utilities frequently experience minor disruptions due to various reasons such as repairs to leaks, water main breaks, seized valves or installation of new infrastructure. In 2018 water operations crew responded to approximately 5 service repairs and 6 water main breaks. 1 additional Water Quality Advisory was in effect for less than 24 hours on the Okanagan Lake Source from June $25 - 26^{th}$ as detailed above.

Repairs in 2018 were completed with little disruption and as quickly as possible. Regular service was restored within the day and public health and safety was not compromised. In circumstances where public health and safety are at risk due an interruption in water distribution services, the District reports the event to Interior Health Authority (IHA) and it is documented in the <u>Monthly Water Quality Reports</u> under *Notable Events*.

With the exception of an emergency repair or break, customers are provided advanced notice. When this is not possible, customers in the affected area are advised and notifications are left on the doors of the residents.

Trihalomethanes (THM's)

Trihalomethanes (THM's) are a by-product of the water disinfection process. They form when natural organic matter (i.e. decaying vegetation commonly found in lakes and reservoirs) reacts with the chlorine used to treat the water. This reaction produces organic chlorites that include suspected carcinogenic "disinfection by-products," the most common of which are THM's.

The maximum acceptable concentration (MAC) for trihalomethanes (*includes the total of chloroform*, *bromodichloromethane*, *dibromochloromethane and bromoform*) in drinking water is 0.100 mg/L (100 μ g/L). This is based on a locational running annual average of a minimum of quarterly samples taken at the point in the distribution system with the highest potential THM levels. (*GCDWQ*)

2018 trihalomethane analysis in the DLC Water System showed Oyama and Beaver Lake sources had total THM averages that exceeding the Guidelines for Canadian Drinking Water Quality (GCDWQ). This may be

due to the higher levels of organics in the upland lakes. All THM results displayed as a running average are detailed in Figures 2-7.

Figure 2. DLC Beaver lake source trihalomethane (THM) data collected 2002 – 2018. Average Total THM values relative to the Guidelines for Canadian Drinking Water Quality (GCDWQ). *2002 and 2003 data limited to one sample date.

Figure 3. DLC Oyama lake source trihalomethane (THM) data collected 2004 – 2018. Average Total THM values relative to the Guidelines for Canadian Drinking Water Quality (GCDWQ). Sampling of Oyama source occurs only during irrigation season (approximately May – October) due to Kalamalka source in distribution lines during non-irrigation season. *2016 and 2017 limited to one sample date.

Figure 4. DLC Kalamalka lake source trihalomethane (THM) data collected 2006 – 2018. Average Total THM values relative to the Guidelines for Canadian Drinking Water Quality (GCDWQ). Kalamalka sampling includes sites within Oyama distribution lines during non-irrigation season (approximately October – May).

Figure 5. DLC Okanagan Lake source trihalomethane (THM) data collected 2006 – 2018. Average Total THM values relative to the Guidelines for Canadian Drinking Water Quality (GCDWQ).

Figure 6. DLC Coral Beach System (Okanagan lake source) trihalomethane (THM) data collected 2009 – 2018. Average Total THM values relative to the Guidelines for Canadian Drinking Water Quality (GCDWQ).

Figure 7. DLC Lake Pine System (Okanagan lake source) trihalomethane (THM) data collected 2012 – 2018. Average Total THM values relative to the Guidelines for Canadian Drinking Water Quality (GCDWQ).

Instrument Calibration and Quality Control

Prior to sampling, field instruments are checked against standards to ensure accuracy. All equipment is regularly maintained and calibrated as required prior to use in the field. Annually, a representative from Hach Services personally attends the DLC to inspect, recalibrate and re-certify water quality hand-held equipment. 2018 certification was obtained for all water quality monitoring field equipment. On-line Water Quality monitoring equipment is verified weekly using the hand-held water quality equipment,

maintained, and calibrated as per manufacture directions and certified by an outside agency as scheduled in the automated operational maintenance program.

Giardia Performance Monitoring: CT calculations

Beaver Lake Source

Chlorine is the primary disinfectant used on the Beaver Lake source and in order to be effective, it must have adequate contact time (CT) with microorganism to inactivate them. Various factors can affect CT values, such as pH, temperature, strength of disinfectants and types of organisms. The CT table that the DLC uses was developed by IHA specifically for the Beaver Lake source at the Glenmore pressure reducing Station (PR6), with the assumption that we are aiming to inactivate both Giardia lamblia (a single-celled parasite that causes intestinal infection) and viruses. Therefore the objective of giardia performance monitoring is to achieve a 3 log inactivation of giardia which is 99.9% deactivation which also provides the required 4 log inactivation of viruses. This PR station on Seaton Road has been working relatively well for collecting CT data. However, due to confined space and inadequate set up within the PR station, this dedicated sample site was instead installed outside of the station and is subject to freezing in winter. This site was only sampled in January 2018 and all CT requirements were achieved with 99.9% -100% deactivation. The CT spreadsheet is located in Appendix C. From February through April Beaver source was either off-line or mixed source water (with Okanagan Lake) and from May through the fall of 2018 this station was then a construction site to bring this PR station above ground. Details of this project are described earlier in this report (page 11) under the Eldorado Treated Reservoir and Glenmore Booster section within the 2018 Capital Works Update. The CT is now met through the new reservoir located on the Eldorado chlorination facility and balancing reservoir grounds and this site is no longer required. Online water quality monitoring equipment for chlorine, pH and temperature have been installed inside the new Glenmore Booster Station and connected to SCADA for both the Vernon Creek and Okanagan Lake source.

Source Sampling (Raw Water)

Raw Water Sampling occurs at intakes, upland drinking water reservoirs, and at deep water intake pump stations.

Crooked Lake (left) Beaver Lake Dam (middle) and Vernon Creek (right)

At raw water intakes we analyze water quality parameters that will provide adequate measurement of chemical and physical water quality. These data is compared against the CDWG as per Conditions on Permit and recommendations in Oyama and Vernon Creek Watersheds Source Water Assessment. Annually, comprehensive tests are collected at all intakes and nutrient testing occurs as budget permits during high and low flow seasons or as required. The DLC continually modifies parameters sampled to provide sufficient baseline data for future water treatment.

2018 Water Operations Annual Report

Raw Water Data from intakes and pump stations are located in Tables 11 through 16 (below). Data is collected from each source from the following sites:

- Beaver Lake source: Vernon Creek Intake (Table 11)
- Okanagan Lake Source: Okanagan Lake Pump Station (Table 12)
- Oyama Lake source: Oyama Creek Intake (Table 13)
- Kalamalka Lake source: Kalamalka Pump Station (Table 14)
- Okanagan Lake Source: Coral Beach Pump House (Table 15)
- Okanagan Lake Source: Lake Pine Pump House (Table 16)

Oyama Lake Dam Spillway

Results are stored electronically and undergo verification prior to monthly and annual reporting to ensure quality controlled data. These data are used to characterize the quality of raw water intakes, monitor levels of physical, chemical and biological changes occurring in raw drinking water, establish trends in drinking water quality, identify and track the occurrence of concerns such as increased turbidity, positive bacteriological results or changes in nutrient loading. As well provide background data for future additional forms of disinfection and water treatment plant(s), assess and report on the state of the DLC's distribution and raw water quality.

Table 11. District of Lake Country Water System, 2018 Raw Water, Beaver Lake Source: Vernon Creek Intake/Eldorado Reservoir. (All data reported from weekly water quality monitoring using hand-held equipment other than True colour and Bacteriological (Caro Analytical Services).

weekly sampling and on-line water quality eqiupment verification	¹ Hardness mg/L as CaCO3	² Turbidity NTU	Temp °C	рН	Cond µS/cm	TRUE color TCU	MF TOTAL CFU/100 ml	MF E.Coli CFU/100 ml	³ % of samples less than 10 E.coli/100mL (N=43)
MIN	40	0.32	1	7.1	48	19	<1	<1	
МАХ	80	4.90	18	8.0	105	91	480	94	87%
AVERAGE	56	1.37	9	7.5	75	38	44 sa	mples	
WQ Guidelines			15	7.0-10.5			<1	<1	
Aesthetic objective (AO) Maximum Allowable Concentation (MAC)	acceptable	1 (max) ≤ 5 NTU AO	ΑΟ	ΑΟ		ΑΟ	МАС	МАС	

1 According to the criteria set out by the Guidelines for Canadian Drinking Water Quality (GCDWQ) the degree of hardness of drinking water may be classified in terms of ts calcium carbonate concentration as follows: soft, 0 to <60 mg/L; medium hard, 60 to <120 mg/L; hard, 120 to < 180 mg/L; and very hard, 180 mg/L and above

2 Turbidity is reported as weekly equipment verification and not SCADA.

3 According to the criteria set out by the BC Water Quality Guidelines (BCWCG) for a system using disinfection only to treat drinking water, "90% of samples should have less than 10 E.coli/100mL

2018 Water Operations Annual Report

Table 12. District of Lake Country Water System, 2018 Raw Water, Okanagan Lake Source: Okanagan Lake Intake. (All data reported from weekly water quality monitoring using hand-held equipment other than True colour and Bacteriological (Caro Analytical Services).

weekly sampling and on-line water quality eqiupment verification	¹ Hardness mg/L as CaCO3	² Turbidity NTU	Temp °C	рН	Cond µS/cm	³ TRUE color TCU	MF TOTAL CFU/100 ml	MF E.Coli CFU/100 ml	UV Transmittance @ 254 nm unflitered	⁴ % of samples less than 10 E.coli/100mL (N=41)
MIN	120	0.22	4	7.9	261	<5	<1	<1	85	
МАХ	220	0.93	8	8.3	318	7.3	110	2	87	100%
AVERAGE	150	0.43	6	8.0	277	n/a	41 SA	MPLES	86	
WQ Guidelines			15	7-10.5			<1	<1		
Aesthetic objective (AO) Maximum Allowable Concentation (MAC)	acceptable	1 (max) ≤ 5 NTU AO	ΑΟ	ΑΟ		ΑΟ	МАС	МАС		

1 According to the criteria set out by the Guidelines for Canadian Drinking Water Quality (GCDWQ) the degree of hardness of drinking water may be classified in terms of ts calcium carbonate concentration as follows: soft, 0 to <60 mg/L; medium hard, 60 to <120 mg/L; hard, 120 to < 180 mg/L; and very hard, 180 mg/L and above

2 Turbidity is reported as weekly equipment verification and not SCADA. 3 Average unavaliable: nine sample results <5 and four results <5.3-7.3

4 According to the criteria set out by the BC Water Quality Guidelines (BCWCG) for a system using disinfection only to treat drinking water, "90% of samples should have less than 10 E.coli/100mL (BCWQG (Criteria) 2006). Results are % of samples less than 10 E.coli/100mL

Table 13. District of Lake Country Water System, 2018 Raw Water Oyama Creek Intake. (All data reported from weekly water quality monitoring using hand-held equipment other than True colour and Bacteriological (Caro Analytical Services).

weekly sampling and on-line water quality eqiupment verification	¹ Hardness mg/L as CaCO3	² Turbidity NTU	Temp °C	рН	Cond µS/cm	TRUE color TCU	MF TOTAL CFU/100 ml	MF E.Coli CFU/100 ml	³ % of samples less than 10 E.coli/100mL (N=23)
MIN	40	0.43	5.6	7.0	46	38	<1	<1	
мах	40	0.85	18	8.0	92	66	1100	280	55%
AVERAGE	40	0.58	12	7.4	54	46	22 sar	mples	
WQ Guidelines			15	7.0-10.5			<1	<1	
Aesthetic objective (AO) Maximum Allowable Concentation (MAC)	acceptable	1 (max) ≤ 5 NTU AO	ΑΟ	ΑΟ		ΑΟ	МАС	МАС	

1 According to the criteria set out by the Guidelines for Canadian Drinking Water Quality (GCDWQ) the degree of hardness of drinking water may be classified in terms of ts calcium carbonate concentration as follows: soft, 0 to <60 mg/L; medium hard, 60 to <120 mg/L; hard, 120 to < 180 mg/L; and very hard, 180 mg/L and above

2 Turbidity is reported as weekly equipment verification and not SCADA.

3 According to the criteria set out by the BC Water Quality Guidelines (BCWCG) for a system using disinfection only to treat drinking water, "90% of samples should have less than 10 E.coli/100mL" (BCWQG (Criteria) 2006). Results are % of samples less than 10 E.coli/100mL

Table 14. District of Lake Country Water System, 2018 Raw Water Kalamalka Lake Intake. (All data reported from weekly water quality monitoring using hand-held equipment other than True colour and Bacteriological (Caro Analytical Services).

weekly sampling and on-line water quality eqiupment verification	¹ Hardness mg/L as CaCO3	² Turbidity NTU	Temp °C	рН	Cond µS/cm	³ TRUE color TCU	MF TOTAL CFU/100 ml	MF E.Coli CFU/100 ml	UV Transmittance @ 254 nm unflitered	⁴ % of samples less than 10 E.coli/100mL (N=52)
MIN	160	0.31	4	7.8	378	<5	<1	<1	90	
МАХ	220	1.20	11	8.6	419	<5	33	7	92	100%
AVERAGE	189	0.61	7	8.1	396		52 Sa	mples	90	1
WQ Guidelines			15	7-10.5			<1	<1		<u>e</u>
Aesthetic objective (AO) Maximum Allowable Concentation (MAC)	acceptable	1 (max) ≤ 5 NTU AO	ΑΟ	AO		AO	МАС	МАС		
1 According to the criteria terms of ts calcium carbor	set out by the	Guidelines	for Canadia ows: soft. 0 t	n Drinking V to <60 mg/L:	Nater Qualit medium har	- :y (GCDWQ) t :d, 60 to <12(the degree of 0 mg/L: hard. 1	hardness of d L20 to < 180 m	- Irinking water may g/L: and verv hard. 1	be classified in L80 mg/L and above

2 Turbidity is reported as weekly equipment verification and not SCADA.

3 Average unavaliable: nine sample results <5 and four results <5.3-7.3

4 According to the criteria set out by the BC Water Quality Guidelines (BCWCG) for a system using disinfection only to treat drinking water, "90% of samples should have less than 10 E.coli/100mL (BCWQG (Criteria) 2006). Results are % of samples less than 10 E.coli/100mL

Table 15. Coral Beach Water System, 2018 Raw Water Coral Beach Intake (Okanagan Lake source). (All data reported from weekly water quality monitoring using hand-held equipment other than True colour and Bacteriological (Caro Analytical Services).

weekly sampling and on-line water guality equoment	¹ Hardness mg/L as	² Turbidity NTU	Temp °C	рН	Cond µS/cm	³ TRUE color	MF TOTAL	MF E.Coli	UVTransmittance @ 254 nm	⁴ % of samples less than 10 E.coli/100mL
verification	CaCO3					TCU	CFU/100 ml	CFU/100 ml	unflitered	(N=48)
MIN	120	0.27	4	7.3	261	<5	<1	<1	83	
МАХ	160	2.24	12	8.4	299	6.8	5	<1	91	100%
AVERAGE	143	0.56	7	8.0	275	n/a	48 Sa	mples	86	
WQ Guidelines			15	7-10.5			<1	<1		
Maximum Allowable	acceptable	≤ 5 NTU	AO	AO		AO	MAC	MAC		

1 According to the criteria set out by the Guidelines for Canadian Drinking Water Quality (GCDWQ) the degree of hardness of drinking water may be classified in terms of ts calcium carbonate concentration as follows: soft, 0 to <60 mg/L; medium hard, 60 to <120 mg/L; hard, 120 to < 180 mg/L; and very hard, 180 mg/L and above 2 Turbidity is reported as weekly equipment verification and not SCADA.

2 fulbility is reported as weekly equipment verification and not SCADA.

3 Average unavaliable: Nine sample results <5 and four results 5.5 - 6.8.

4 According to the criteria set out by the BC Water Quality Guidelines (BCWCG) for a system using disinfection only to treat drinking water, "90% of samples should have less than 10 E.coli/100mL (BCWQG (Criteria) 2006). Results are % of samples less than 10 E.coli/100mL

weekly sampling and on-line water quality eqiupment verification	¹ Hardness mg/L as CaCO3	² Turbidity NTU	Temp °C	рН	Cond µS/cm	³ TRUE color TCU	MF TOTAL CFU/100 ml	MF E.Coli CFU/100 ml	UV Transmittance @ 254 nm unflitered	⁴ % of samples less than 10 E.coli/100mL (N=41)
MIN	120	0.21	5	7.8	256	<5	<1	<1	84	
МАХ	160	0.98	14	8.3	311	14	7	2	87	100%
AVERAGE	144	0.45	11	8	286		49 Sar	mples	85	
WQ Guidelines			15	7.0-10.5			<1	<1		
Aesthetic objective (AO) Maximum Allowable Concentation (MAC)	acceptable	1 (max) ≤ 5 NTU AO	AO	ΑΟ		AO	МАС	МАС		

1 According to the criteria set out by the Guidelines for Canadian Drinking Water Quality (GCDWQ) the degree of hardness of drinking water may be classified in terms of ts calcium carbonate concentration as follows: soft, 0 to <60 mg/L; medium hard, 60 to <120 mg/L; hard, 120 to < 180 mg/L; and very hard, 180 mg/L and above

2 Turbidity is reported as weekly equipment verification and not SCADA.

3 Average unavaliable: Nine sample results <5 and four results 5.5 - 6.8.

4 According to the criteria set out by the BC Water Quality Guidelines (BCWCG) for a system using disinfection only to treat drinking water, "90% of samples should have less than 10 E.coli/100mL (BCWQG (Criteria) 2006). Results are % of samples less than 10 E.coli/100mL

Raw Water Reservoirs/Intakes

The District draws water from four main primary drinking water reservoirs:

- 1. Beaver Lake (Crooked Lake chain flows into Beaver Lake) upland source with a downstream intake on Vernon Creek.
- 2. Oyama Lake (Damer Lake flows into Oyama Creek) upland source with a downstream intake on Oyama creek
- 3. Okanagan Lake (3) deep water intake
- 4. Kalamalka Lake (1) deep water intake

Oyama Lake downstream dam (left) and Oyama Creek (right).

The Oyama and Vernon Creek watersheds together encompass approximately 141.1 km2. Together, the two community watersheds supply the DLC with approximately 65% of their source water. Both watersheds are dependent on upland storage reservoirs that rely on snow pack for annual water regeneration and supply needs.

The DLC draws water from intakes both on Vernon and Oyama Creeks. In addition to monitoring and sampling at these intakes, the DLC also analyzes raw water from our upland drinking water reservoirs. These reservoirs have samples collected for other water quality parameters that would provide adequate measurement of chemical and physical water quality against the CDWG as per Conditions on Permit and recommendations in 2010 Oyama and Vernon Creek Source Water Assessment. Comprehensive reports (parameters tested at the drinking water intakes) are located in Appendix D and the result for nutrient sampling (upland drinking water reservoirs (Beaver and Oyama)) is contained in Appendix E

The District's two main upland drinking water reservoirs (Beaver and Oyama Lakes) and creek sources (Vernon and Oyama Creeks) exceeded the GCDWQ for colour and turbidity. Such results are common throughout the Okanagan wherever water is sourced from highland watersheds.

Source water from these watersheds is high in organic matter which causes colour issues and elevated disinfectant by-products. Turbidity is naturally occurring in some areas and can be compounded by human activities that occur above our intakes, such as recreation, cattle ranching and logging.

2018 Water Operations Annual Report

The water quality monitoring of these reservoirs may increase or decrease in response to varying water quality conditions and to provide adequate baseline data for future water treatment. Results are stored

electronically and undergo verification prior to monthly and annual reporting to ensure quality controlled data. The data is used to characterize the raw water quality from our upland drinking water reservoirs, monitor levels of physical, chemical and biological changes occurring in raw drinking water, establish trends in drinking water quality, identify and track the occurrence of concerns such as increased turbidity, positive bacteriological results or changes in nutrient loading, provide background data for future additional forms of disinfection and water treatment plant(s) and to assess and report on the state of the DLC's distribution and raw water quality.

Algal blooms and other aquatic growth in our drinking water reservoirs can occur at various times throughout the year. Aquatic anomalies are assessed, under the direction of an aquatic biologist; samples are collected and sent for analysis.

The Eldorado balancing reservoir is monitored regularly and operations staff continued with on-going measures to control aquatic organism growth which includes the operation of the water as a balancing reservoir and the periodic removal of accumulated sediments. In 2018 this worked well however, there was one event that required additional analysis. Near the end of June a sample collected from the Eldorado balancing reservoir (Beaver Lake source) was determined to be filamentous green algae. The taxa were identified as nontoxic adding only nutrient components to the water. The balancing reservoir was managed accordingly and the chlorine was maintained with no complications in disinfection or delivery. There were no observed algae incidents on Oyama Lake or Oyama Creek.

Eldorado balancing reservoir (Beaver Lake source) sample collected was determined to be filamentous green algae. The taxa were identified as nontoxic adding only nutrient components to the water.

Since 1998, when a taste and odour complaint occurred on Kalamalka Lake, the DLC, Greater Vernon Water/North Okanagan Regional District and the Ministry of Environment have partnered to acquire water quality data on this source. The information obtained defines the physical and biological impact at the DLC'S existing intakes; accumulates baseline water chemistry for future additional water treatment; provides information on the ideal depth of intakes for the best water quality; shows fluctuations in nutrients and algae production; and the implications of changes for water resources. This research is evaluated and re-directed on an annual basis.

In mid-July Kalamalka Lake began to marl and although it was less intense than previous years, the beautiful blue and turquoise green colours (picture above submitted as Jewels of Lake Country through DLC photo contest, V.Gouliquer) were still present. With this crystallization of calcium carbonate we also see a slight increase with this inorganic turbidity source. With very low bacterial counts and our chlorine maintained at adequate levels this did not cause additional problems other than regular cleaning and maintenance of equipment at our chlorination and UV facility. IHA was aware of this increased turbidity trending and a water quality advisory was not required.

Watershed Management

The DLC supplies domestic and irrigation water for the communities of Oyama, Winfield, Okanagan Centre, and Carr's Landing. Sixty five (65%) percent of the water delivered to the Lake Country communities originates from the Oyama and Vernon Creek watersheds.

Infrastructure within these watersheds was constructed approximately 100 years ago for irrigation, but in the 1970's the systems were updated, and evolved to become a major domestic water supply. As the service population continues to expand, there has been a significant increase on the demands of these watersheds. Both the Oyama and Vernon Creek watersheds are multi-use and have numerous ongoing activities (e.g. forestry, range, recreation, etc.). Under the BC Government's Action Plan for Safe Drinking Water, the primary responsibility for protecting drinking water from land-use activities lies with the agency responsible for approving those activities. This can create complex governance that makes addressing source water concerns a significant challenge.

2018 Water Operations Annual Report

In 2010 the DLC secured an Okanagan Basin Water Board Water Quality and Conservation Grant that provided us with the substantial financial support to complete Watershed Source Water Assessment Plans. The DLC meets annually with stakeholders to review the plan, the intentions and recommendations/action items that were completed and other actions that have occurred or are required. The DLC also continues to collaborate with stakeholders (Forestry, Ranchers etc.) on other various occasions throughout the year to address matters as they arise. In 2015, the DLC fulfilled the second watershed related requirement of condition on permit to produce an implementation plan.

Watershed Source Water Assessment Plans:

2010 Oyama and Vernon Creek Source Water Assessment (Watershed Protection Plan)]
2010 Source to Tap Assessment South Kalamalka Lake Intake (DLC water system)
2010 Source to Tap Assessment of the Okanagan lake Intake (DLC water system)
2015 Source Water Assessment and implementation Plan: Oyama and Vernon Creek

Damer Lake (above).

The purpose of the Source to Tap Assessments on the DLC distribution systems Kalamalka and Okanagan Lake sources were to conduct research and compile known data for use in identifying the DLC'S intake strengths, liabilities and planning for water quality protection and improvement. One of the most important recommendations in these assessments was the identification of an Intake Protection Zone. This zone defines the area where the intake should take precedence over every other use of consideration. It also defines the areas of land and water where special care must be taken in the use and handling of potential contaminants to prevent them from accidently entering the lake and affecting the intake.

The Watershed Protection plan for the Oyama and Vernon Creek watersheds promotes sustainable of our ecosystems management through collaborative efforts of all stakeholders. The most valuable management tool from this plan is the identification of the various vulnerability zones that indicate the potential for risk to water quality. When considering any high risk activities within our community watershed, these high risk areas are the first to be evaluated for potential impacts of the activities along with the associated levels of risk. These activities may include forestry management, sports and/or recreational and mining activities.

Throughout the process of completing these plans, stakeholder involvement was a key component to ensuring a broad range of aspects were considered. The goal for stakeholders is to be aware of the vulnerability zones and to recognize the recommendations specific to them when planning further watershed activities.

The Oyama and Vernon Creek Source Water Assessment (SWA) was completed in 2010 as a condition on permit and prepared by Ecoscape Environmental Consultants Ltd. with input from all stakeholders.

2018 Water Operations Annual Report

Follow up meetings are for stakeholders to share their past accomplishments and current activities in the watershed. Overall, there is an appreciation and recognition our watersheds are multipurpose and it takes and overall effort to help protect the water while also sustainably maintaining resources for all users. Stakeholders are encouraged to bring forward their questions with an understanding that we want to maintain trust in this environment. As we continue to understand more of each stakeholder's processes and various regulations involved in their activities, recommendations can more often be dealt with through regular communication and collaborative efforts. We recognize water is vitally important; however, we are all impacting the watershed regardless of what our activities are, we all have rights to be in the watersheds and we all have room for improvement.

The Source Water Assessment continues to play an important role in the management and planning in our community watersheds. In 2018 a specific stakeholder meeting to follow up on identified risks and actions in the SWA was not held. However, throughout 2018 there were various meetings (and continuous communications) either on a one-to one basis or in group settings with the Ministry of Agriculture, Ministry of Forest Lands and Natural Resource Operations, forestry licensees, range tenure holders, private lease lot cabin and resort owners, Okanagan Basin Water Board, Central Okanagan Regional District and the Ministry of Transportation and Infrastructure are among some of the parties the DLC worked with in 2018 respecting watershed activities. DLC staff also maintains other connections through involvement with several of the above-mentioned in various watershed related organizations some of which are the Okanagan Basin Water Board (OBWB), Okanagan Water Stewardship Council, BC Water Supply Association, Public Advisory Group for Sustainable Forest Management, OBWB and source protection and wetland committee.

In 2019 scheduled meetings are planned to resume. Major licencees in our watershed have opted out of public advisory group planning and the DLC is no longer a participant in their sustainable forest management process. As such, there is now reduced information sharing between the forestry stakeholders and local government water purveyors. We continue to develop our collaboration efforts and maintain and improve relationships with the SWA stakeholders group, striving to implement recommendations and recognize improvements as we move forward. Our watersheds are multipurpose, multijurisdictional and cumulatively all activities are making an impact. All stakeholders have a responsibility to recognize this and use best practices maintaining sustainable resources for all users.

Even without the annual stakeholder meeting, the DLC endeavors to maintain connection with stakeholders in our community watersheds and network at various professional functions to learn of other's successes, share information and seek potential partnerships. Recent partnerships have been with UBCO (various studies in our watersheds), Ministry of Agriculture, FLNRORD, Tolko and Ranchers (Silvopasture), and RDNO (ongoing Lake monitoring program). The DLC at times acts as a liaison for stakeholders in assisting with providing connections, record and reporting of events and providing information. We are now more aware of situations in the watershed when these relationships are sustained.

The DLC continued the joint work with Greater Vernon Water/North Okanagan Regional District (RDNO) and the Ministry of Environment to acquire water quality data on Kalamalka Lake. Data collected from 2018 sampling season was compiled and updated into the Kalamalka Lake Water Quality Study, Microflora, Water Chemistry & Thermal Profiles Report. The 2018 sampling season began in May during freshet and continued monthly into the fall; this marks the 20th year of collaboration on this comprehensive study.

2018 Water Operations Annual Report

In June 2018, DLC council officially received the Kalamalka and Wood Lake Boat Impact Study (March 2018) and it was requested that this report be referred to staff to develop a committee to devise implementation strategies and public consultation initiatives to review the recommendations of the report.

Under this direction, DLC staff (Strategic & Support Services Manager and Water Quality Technician) collaborated with the RDNO, District of Coldstream and RDCO with an initial step of further public engagement. An OBWB grant was awarded and the Okanagan Collaborative Conservation Program retained to help lead this project. The Boat Impact Study was undertaken to investigate the long-term potential threats of boating activity on the water quality in Wood Lake and Kalamalka Lake, as well as determine potential impacts from boating on environmental values. The study also recorded the number of boats on the lake during the summer at peak times to determine if the lakes were reaching maximum recreational capacity. This grant will cover the costs for developing the public education materials, disseminating information on the awareness of the importance to protect our drinking water intakes and shorelines. It is anticipated that this report will be a major driver in our drafting of a comprehensive plan for source water protection as we also work towards Council's directive to further engage with the public and to craft a comprehensive source water protection plan for Kalamalka Lake and Okanagan Lake intakes including an implementation plan.

This project designed and distributed (rack cards), created a booth display to engage with boaters and the public. This process consisted of sharing information, conducting surveys, and having discussions with the public on a variety of topics including: waves and erosion, safety, drinking water quality, and regulations. Rack cards are being distributed through local government offices and through Tourism Information Centers, municipal halls and at OCCP and OBWB outreach events and conferences. Inform was provided at various events to evaluate the level of support for the Boat Impact Study recommendations. Feedback from this outreach will help local government with further outreach programs and other potential strategies to protect water quality and environmental values. The partners in this project will meet again in early 2019 to receive the updated results and establish next steps.

2018 Water Operations Annual Report

In 2018, the DLC continued to respond and investigate complaints of unsanctioned off road activities in high vulnerability areas directly along creeks and Beaver Lake Road, below our drinking water reservoirs and above drinking water intakes. Motorized vehicle activity in the drainage of our intakes could adversely impact our water quality through soil disturbance, creation of new drainage pathways among other concerns in these vulnerable areas adding to the cumulative impact, on the elevated particulate loading into our drinking water source.

If you notice questionable activities in our Community Watersheds report the incident to:

1-844-676-8477.

Range Management

The Okanagan Shuswap District Range Program's annual meeting took place in the spring at the District of Lake Country. The 2017 range summary at the 2018 planning meeting was smaller than the previous years with only the RDNO and the DLC watersheds: Duteau, Oyama and Beaver. This setting works much better for individual discussions and specific updates with range use permit holders in our community watersheds. Outside of this meeting, the DLC connects with ranchers (and others) throughout the year working to maintain open lines of communication with updates on projects, opportunities or situations that either party should be aware of.

Overall, the discussions this year focused on collaboration among local Government, ranchers, Ministries within FLNRORD), BMP's, UBCO research projects, debris stream protection, Provincial updates regarding groundwater and wildfire, watershed fire risk planning and recreational development. Again concern remained of the impact from (non-sanctioned and unknown but authorized) recreational activities in our watershed and forestry development.

All major licencees and the SSSP have agreed to use the DLC vulnerability zone mapping in their planning and development process.

Shown left is the Oyama Creek Vulnerability zone map.

DLC staff also actively participated and presented updates at various educational workshops for range, water stewardship, watershed protection and forestry planning committees throughout 2018. These presentations, workshops and associations are important for conveying and gaining further understanding the complexity of integrated watershed land use. Science based research and collaborative partnerships have been the key to identifying and developing solutions for resolving water quality and quantity issues.

Forestry

Harvest activities in our community watershed continued in 2018. There are two major licencees in our watersheds: Tolko and BC Timber Sales, both of which had harvest operations in 2018. The DLC makes an ongoing effort to maintain communications through staff involvement with the Sustainable Forest Management Plans (SFMP) Public Advisory Group and direct contact as necessary. However, as mentioned under the watershed section, both Tolko and BCTS have opted out of public advisory group planning. Both Tolko and BCTS are now obtaining their certification through the Sustainable Forestry Initiative (SFI) that is not open to public input or consultation in the development and reporting of targets and indicators in the open consultation process as the DLC had previously participated in with the SFMP.

Major Licencees in our community watersheds are well aware of our Watershed Protection Plan and the DLC has requested it be used as a planning tool when developing harvest plans. Harvest/site plans are reviewed by DLC staff and recommendations are provided as needed to address issues such as access (cattle and unsanctioned motorized vehicle activities), wild fire management, drainage concerns, and rehabilitation of roads to decrease the amount of non-status roads accumulating in our community watersheds.

Small Scale Salvage is a program that is regulated and operates through the Province. Private companies can apply for a small scale salvage licencee through the Ministry of Forest Lands and Natural Resources Operations and Rural Development (FLNRORD). These smaller operations apply to the FLNRORD, harvest small volumes of timber that would otherwise not have been harvested and/or to address forest health objectives. Small scale salvage operations do not follow Forest Stewardship Plans (FSP) or belong to a certification process such as the SFMP or SFI. These FSP plans are to include a set of values/principles, objectives, indicators and target/performance measures that promotes sustainable forestry practices through addressing environmental, economic and social aspects of forest management. Major Licencees acquire certification to show they are sustainably managing their forestry activities and products. It is the responsibility of the small scale salvage operator and the Province to ensure that best management practices are being followed. The DLC as requested to be given the opportunity to provide comments and recommendations on our two major licencees FSP's so that high vulnerabilities, risks and other important concerns in protecting water quality and quantity are addressed. However, in 2017 Tolko did not advise of when they posted their FSP for public input and we were unaware of this until after the public comment period was closed. The DLC has made requests that all future FSP's be referred for comment.

2018 Water Operations Annual Report

As with major licencees, when small scale salvage operations occur in DLC'S watersheds, DLC staff review the referral for comment/recommendations and remind or provide the applicant a copy of our Watershed Protection Plan highlighting the importance of recognizing our vulnerability zones and properly planning and working within these zones. The DLC's highest concerns are within high vulnerability zones regardless of type of the proposed activity. The DLC continues to express concern with the Province authorizing approval for small scale salvage logging in high vulnerability zones (commonly within a major licensee's Lakeshore protection).

The Okanagan Shuswap District advises they do not regularly track ECA (equivalent Clear Cut Area) and rely on the comments from Major Licensee's to identify related issues in their feedback. The ECA can have hydrologic impact influencing water quantity (timing and volume) which also impacts water quality. The DLC will continue requesting updates and address this information gap in our watershed implementation plans as the cumulative hydrometric impacts were apparent in the 2017 flooding.

For background, in 2017, Tolko proposed logging along Beaver Lake Road and near the Beaver Lake dam. Prior to logging the DLC, Ranchers, (FLNRORD – Range) and Beaver Lodge were in various discussions and block-walks to make Tolko aware of the water quality, quantity, access and other concerns with harvesting in this area through their referral process. The DLC made requests for special consideration in the areas of access management into the high vulnerability areas off Beaver Lake Road, restricted motorized vehicle access from the campground, cattle management areas, road deactivations and rehabilitation all to reduce cumulative impact sources of sediment that contribute to high turbidly in our drinking water source. In 2018 and following the harvest in this area, reduced access fencing was installed at the Beaver Lake dam and on-going discussion of works are in process for works off Beaver Lake Road to maintain cattle access and restrict motorized vehicle activities into this area. The DLC staff does need to walk this area again to confirm other works were completed for reducing and/or eliminating motorized access into this area.

Section of map of Tolko's proposed logging off Beaver Lake Road and more specifically (below), the sites below the Beaver Lake resort and Dam.

District of Lake Country

Blocks that started harvest in 2018 were: LL1251, LL1252, and LL1253 – Located along Beaver Lake road. Block walks and recommendations for risk to water quality, quantity and access have been completed. DLC concerns focused on culverts and drainage especially following the flooding and road wash outs during the 2017 freshet and high 2018 flows. The Ministry of Transportation and Highways is well aware of the drainage from these new sites as well as the devastation to the drainage corridor (their section of Beaver Lake Road) from the 2017 flooding and made substantial repairs and improvements to ditching and culverts

The primary concern to the DLC remains the blocks above the Vernon Creek Intake as it is our community water supply. In 2017 the DLC hired a specialized hydrologist with forestry expertise to specifically address our apprehension with these sites. Concerns were with the Licensee's terrain assessment, the steep slopes above the community's drinking water intake and that DLC's specific water management prescriptions were being addressed in Tolko's plans. Tolko is fully aware of this high vulnerability area and sensitivities of this block; they are committed to continue discussions and a further block walk in 2018 did take place. This year no harvest commenced however, the drainage was addressed in addition to fixing problems caused by off-road vehicle activities in this sensitive area. This is be discussed again in 2019.

Wildfire Planning:

The DLC is partnering with FLNRORD and the RDNO in an upcoming Forest Enhancement Society funding, integrating and collaborative fire risk management planning. There is potential for the local governments in the neighboring watershed to work together modifying each of our wildfire protection and mitigation plans to develop one that includes priorities of all stakeholders and to meet new expectations of the land manager and BC Wildfire Service. Wildfire reduction planning and mitigation measures are not directly managed by the Province. Provincial funding for wildfire reduction planning and operations is provided to the Forest Enhancement Society of BC and dispersed through process grants. These grants are dependent on a variety of factors including the collaboration and consent of major stakeholders. This is an extensive process with a small window of opportunity. If the wildfire reduction plans and operations grant is awarded in 2019 there would potentially be five community watersheds on the Aberdeen Plateau (from Vernon through to Highway 33 that would be under one massive landscape management plan. This is a

2018 Water Operations Annual Report

remarkably large area and the plan and operations would extend over multiple years. The Planning, prescriptions and operations will require a unique team of specialized subject matter experts with extensive knowledge in wildfire behavior, planning and management, mapping, LiDAR proficiency, hydrogeology, forestry, and several other areas of expertise to establish a coordinated wildfire reduction plan and carry out prescriptions of this scale.

This year and last were the worst wildfire seasons on record (over 2 million Ha lost to wildfires) with a provincial state of emergency being declared each year. The possibility of a catastrophic wildfire occurring in our community watershed is very high. A devastating fire in the Beaver or Oyama watersheds would not only degrade water quality but post-fire floods and landslides are expected impacts seen directly following the first storm event (or freshet) and for years following. The DLC has recognized Wildfire as a risk to our community and have identified a process for communication with the BC Wildfire Service (BCWS) during the wildfire season. This is identified in our Potable Water Emergency Response Plan (Section 3.10 provided to IHA July 2018). Currently (throughout the wildfire season) the DLC maintains contact weekly with the BCWS to obtain information for the Zone Wildfire Commanding Officer should a strike occur in our community watersheds. This officer would then provide direct communication with our primary contact for information on our infrastructure and provide progress reports. This protocol was extended in 2018 as the extreme dry season went well into the fall. We will continue to work with BCWS to have the DLC updated in their BCWS Pre-Organization book (i.e. for primary contact if wildfire occurs in Beaver or Oyama Watersheds). Should the DLC be awarded the funding for Wildfire reduction planning and mitigation this method of contact with BCWS will also be addressed to ensure communication is managed in the most efficient and effective process.

Appendices

Appendix A – Summary of Positive Bacteriological Results in Distribution

	Total coliforms CFU/100 mL	E.coli CFU/100 mL	Presence Absence (total coliforms)	Presence Absence (E.coli)	Sample date	Number of TC/E.coli Samples	Number of P/A samples						
District of Lake Country Water System:													
Beaver Lake Source (WQA)	no	ne detected in dis	stribution systen	n		36	18						
Okanagan Lake Source none detected in distribution system 31 34													
Oyama Lake Source (WQA) none detected in distribution system 31 34 Oyama Lake Source (WQA) none detected in distribution system 24 12													
Kalamalka Lake Source	no	ne detected in dis	stribution systen	n		57	30						
Coral Beach Water System: Okanagan Lake Source	nc	ne detected in dis	stribution systen	n		52	27						
Lake Pine Water System: Okanagan Lake Source	nc	ne detected in dis	stribution systen	n		37	21						
	-				TOTAL:	237	142						
* Background Colonies > 200 CFU/100 1 Overgrown with visible Total Coliforms) mL s detected however	due to interference	from high concer	ntration of back	ground bacter	ria the total coliforms cannot be	determined.						

Appendix B – District of Lake Country Sampling Sites District of Lake Country Water System: Beaver Lake Source

Bistillet of Lake Coul			<u> </u>						inc.	00		<u> </u>												
MATRIX: Water Quality Sampling Sites, Criteria,Purpose, Type of sample Station	Source	THM	НАА	BacT/Water Chemistry	Free Ci2/NTU when required	Yard Hydrant	Online WQ equipment verification	Eclipse #88	Hose bib	Sink	Stainless port	Galvanised pipe	Continuous run	Point of Disinfection	First Customer	Intermediary	End of line	Chronic problem area	Stale water problem area	Seasonal only	Future Online CT monitoing site	Recommend install Eclipse #88	Sample Site Modification Required	Recommend not use
Vernon Creek Intake RAW	Beaver Lk			х									х											
Eldorado RAW	Beaver Lk			х			х		х															
Eldorado Balancing Reservoir	Beaver Lk			х			х				х													
Eldorado Reservoir chlorination facility (reservoir inlet & outlet)	Beaver Lk						x				x		x	x										
Artella	Beaver Lk				х	х											х							х
Breakwater	Beaver Lk				х				х								х							х
Camp Rd shop Yard hydrant	Beaver Lk			х												х				х		х		
Camp Rd shop inside building	Beaver Lk			х						х						х								
Camp Rd Reservoir (off line)	Beaver Lk			х	х						х					х			х					
Cooney Drain	Beaver Lk	х		х								х					х					х		
Glenmore Booster Station	Beaver Lk		х	х			х				х				х									
Mulbery	Beaver Lk			х				х								х								
Dewar Park	Beaver Lk			х		х											х							х
Fire Admin Building	Beaver Lk			х		х										х								
Jammery	Beaver Lk				х					х														х
Long(Contractor to install in 2019 - yard hydrant broke summer 2018))	Beaver Lk			x				x									x							x
Middleton Rd (Future)	Beaver Lk			х												х						х		
McCreight	Beaver Lk			х		х											х	х				х		
Nighthawk	Beaver Lk			х		х											х	х	х					
North View/Chase	Beaver Lk			х				х									х	х						
Nygren	Beaver Lk			х				х									х							
Pow Rd PRV Stn	Beaver Lk	х		х								х				х								
PR2	Beaver Lk			x	x	x										x								
Williams	Beaver Lk			х		х		х									х	х	х					х

District of Lake Country Water System: Okanagan Lake Source

MATRIX: Water Quality																								
Sampling Sites							u																ed	
Criteria Burnosa, Tuna of							catic														site	38	quir	
comple Station					red		rific														ng :	e #8	Re	
sample station	Source	THM	НАА	BacT/Water Chemistry	Free Ci2/NTU when requi	Yard Hydrant	Online WQ equipment ve	Eclipse #88	Hose bib	Sink	Stainless port	Galvanised pipe	Continuous run	Point of Disinfection	First Customer	Intermediary	End of line	Chronic problem area	Stale water problem area	Seasonal only	Future Online CT monitoi	Recommend install Eclips	Sample Site Modification	Recommend not use
Ok Lk Intake RAW	Ok Lk			х							х		х										х	
Ok Lk Pump Stn/chlorination																								
facility	Ok Lk						х				х		х	х										
Arena	Ok Lk				х											x				х			x	
Clement	Ok Lk			х					x								х			х		x	х	
Copper Hill	Ok Lk			х		х											х					X		
Glenmore Booster Station	Ok Lk		X	Х			X				X				X									
Jardine Pump Stn	Ok Lk			х						x						x								
Kelwin	Ok Lk				х						x						х							
Lower Lakes Reservoir (cell 1)	Ok Lk			х			x				х					X								
McCoubrey	Ok Lk			х				х								X								
Ok Bio Fuels (Jim Bailey Rd)	Ok Lk			х		х																		
Ponderosa pumphouse	Ok Lk			х							х		х				х							
Ponderosa PRV stn	Ok Lk			х							х					X								
Ottley Rd (off Stubbs)	Ok Lk			х				x							x						х			
Upper Lakes Reservoir	Ok Lk			х					x															
Upper Zone (Future)	Ok Lk			х																		х		

District of Lake Country Water System: Oyama Lake Source

-	-		- -		-	-						-								-				
MATRIX: Water Quality							_																-	
Sampling Sites,							tion														e		iirea	
Criteria, Purpose, Type of					p		fica														g sit	#88	tedr	
sample Station					uire		/eri												e		oing	se	nR	
				trγ	req		ent							_				ea	are		nit	Eclij	atic	
				mist	ien		pme							tior				n ar	lem		_m	all I	dific	nse
				Che	J wh		dui				t	ipe	un.	lec	Ŀ			len	rob	>	e CI	inst	Mo	not
				ter (NTC	rant	Qe	88			port	id p	us r	Disir	ome	iary	e	rob	er p	luo	ulin	pua	ite I	pua
	e			Wat	j2/	Hydi	e M	e #8	bib		ess	nise	onu	of [Cust	nedi	f lin	nic p	vate	nal	e Oi	nme	le S	hme
	urc	₽	A	ICT/	ee (rd F	ulin	lips	se	۲	ainle	alvai	ntii	oint	st C	tern	o p	Iror	ale	aso	itur	cor	dme	cor
	So	Ļ	H/	Ba	Fr	Ya	ō	Ec	Ĭ	Siı	Sti	ğ	с С	Рс	Fii	In	En	с С	St	Se	Fu	Re	ŝ	Re
Easthill	Oyama Lk	х	х	х		x		х								х								
Oyama Rd S	Oyama Lk	х		х				х									х	х	х					
Oyama Rd N	Oyama Lk			х				х									х	х	x					
Oyama Lk/Hayton Rd	Oyama Lk				x												х	х		x				х
Oyama Creek Intake RAW	Oyama Lk			х									х											
Oyama Reservoir	Oyama Lk			х							x			х									x	
Ribbleworth	Oyama Lk			х				х								х							х	
Sawmill Rd at Middlebench																								
(Future)	Oyama Lk				х							х				х							x	
Talbot Rd Booster Stn (future)	Oyama Lk				х				х								х							
5410 Todd Rd. (summer: First																								
customer Fall (Sawmill online)				v							v				v	v	v							
could be either from Sawmill or	.			Ŷ							^				Ŷ	Ŷ	Ŷ							
from reservoir	Oyama Lk																							
Oyama Creek																								
intake/Chlorination Facility -																								
Chlorinator post reservoir	Oyama Lk						х						х	х										

2018 Water Operations Annual Report

District of Lake Country Water System: Kalamalka Lake Source

MATRIX: Water Quality Sampling Sites, Criteria,Purpose, Type of sample Station	Source	ТНМ	НАА	BacT/Water Chemistry	Free Ci2/NTU when required	Yard Hydrant	Online WQ equipment verification	Eclipse #88	Hose bib	Sink	Stainless port	Galvanised pipe	Continuous run	Point of Disinfection	First Customer	Inter mediar y	End of line	Chronic problem area	Stale water problem area	Seasonal only	Future Online CT monitoing site	Recommend install Eclipse #88	Sample Site Modification Required	Recommend not use
B-2 Reservoir	Kal				х				х							х								
Cornwall/ Sheldon	Kal	х	х	х				х								х		х						
Evans	Kal			х				х									х							
Kal Lk Intake RAW	Kal			х							х		х											
Kal Pump Stn	Kal			х			х				х			х	х						х			
Sawmill Rd Booster (Future)	Kal			х												х	х							
Oyama Creek Chlorination																								
Facility (distribtuion water																								
fromKal Source (Sawmill) to																							1	
Oyama reservoir)	Kal						х						х	х										
Old Oyama Pumphouse	Kal				х						х		х			х								х
Teddy Bear (seasonal)	Kal			x							x						x			x				x

Coral Beach Water System: Okanagan Lake Source

MATRIX: Water Quality Sampling Sites, Criteria,Purpose, Type of sample Station				Chemistry	l when required		quipment verification					pe	nn	Ifection	er			olem ar ea	roblem area	,	e CT monitoing site	install Eclipse #88	Modification Required	not use
	Source	MHT	НАА	BacT/Water (Free Ci2/NTL	Yard Hydrant	Online WQ e	Eclipse #88	Hose bib	Sink	Stainless por	Galvanised pi	Continuous r	Point of Disir	First Custom	Intermediary	End of line	Chronic prob	Stale water p	Seasonal only	Future Onlin	Recommend	Sample Site I	Recommend
Coral Beach Intake RAW	CB Ok Lk			х			х						х										х	
Coral Beach Pump Stn	CB Ok Lk						х				х			х	х						х			
Coral Beach Pump Stn (distrib sample site)	CB Ok Lk			x					x					x	x									
Coral Beach Reservoir (Future)	CB Ok Lk			x												x						x		
Coral Beach South End	CB OK FK	X	х	X		Х											X					X		

Lake Pine Water System: Okanagan Lake Source

MATRIX: Water Quality																								
Sampling Sites,							ion																ired	
Criteria, Purpose, Type of					p		ficat														g site	#88	nbə	
sample Station	Source	THM	НАА	BacT/Water Chemistry	Free Ci2/NTU when require	Yard Hydrant	Online WQ equipment veri	Eclipse #88	Hose bib	sink	Stainless port	Galvanised pipe	Continuous run	Point of Disinfection	First Customer	Intermediary	End of line	Chronic problem area	Stale water problem area	Seasonal only	Future Online CT monitoin	Recommend install Eclipse	Sample Site Modification R	Recommend not use
Lake Pine Intake RAW	LP Ok Lk			х					x														x	
Lake Pine chlorination facility	LP Ok Lk		x				x				x			x	x									
Lake Pine Booster/Lower Res	LP Ok Lk		x	х			x				х			х	х						x			
Lake Pine Lower Res	LP Ok Lk		х	х				х							х									
Lake Pine PR Stn.	LP Ok Lk	х		х													х					х		
Lake Pine Upper Reservoir	LP Ok Lk			х							х					х								
Moberly South (Future Site)	LP Ok Lk																x							

Appendix C – 2018 Giardia Performance Monitoring

DATE	рН	TEMP C	FLOW	Free CI	СТ	СТ	CTa/CTr	Free CI	%	TOT. VOL.	FLOW	TIME
Jan	(highest)	(low est)	L/s	PR6	achieved	Req'd		Req'd	Inactivation	USGAL	Usgpm	(hrs)
1	7.00	3.80	10.00	3.00	7742.7	204.0	38.0	0.08	100.00	409124	159	43.0
2	7.00	3.80	10.00	2.20	5678.0	194.7	29.2	0.08	100.00	409125	159	43.0

Appendix D – Comprehensive Test Results

			2018 Compr	ehensive Results			
Distribution S	ource	Beaver	Okanagan	Lake Pine	Coral Beach Source	Oyama	Kalamalka
Site		VERNON CREEK Intake	OK Pump House	LAKEPINE Pump House	CORAL BEACH Pump House	OYAMA CREEK	KALAMALKA Pump House
Date		June 18 2018	June 19 2018	June 19 2018	June 19 2018	June 19 2018	June 19 2018
Anions	units						
Alkalinity (total)	mg/L	29.6	113.0	115.0	113.0	35.4	158.0
Alkalinity (MAC)	mg/L	Ne europe quideline	No ourrent guideline	No ourrent guideline	No ourrent guideline	No ourront guidolino	No ourrent guideline
Alkalinity (AO)	mg/L	No current guidenne	No current guiderne	No current guiderne	No current guiderne	No current guiderne	No current guiderne
Chloride	mg/L	1.71	4.98	6.77	5.09	0.62	7.36
Chloride (MAC)	mg/L						
Chloride (AO)	mg/L	≤250	≤250	≤250	≤250	≤250	≤250
Fluoride	mg/L	<0.10	0.17	0.19	0.15	0.11	0.25
Fluoride (MAC)	mg/L	1.5	1.5	1.5	1.5	1.5	1.5
Fluoride (AO)	mg/L						
Nitrogen, Nitrate as N	mg/L	0.028	0.074	0.216	0.065	0.078	<0.010
Nitrate (MAC)	mg/L	10	10	10	10	10	10
Nitrate (AO)	mg/L						
Nitrogen, Nitrite as N	mg/L	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
Nitrite (MAC)	mg/L	1	1	1	1	1	1
Nitrite (AO)	mg/L						
Sulphate	mg/L	3.6	29.5	32.8	29.5	10.5	52.9
Sulphate (MAC)	mg/L						
Sulphate (AO)	mg/L	≤500	≤500	≤500	≤500	≤500	≤500
			Genera	l Parameters			
True Colour*	TCU	44	<5	<5.0	<5.0	46	<5
True Colour (MAC)	TCU						
True Colour (AO)	TCU	≤15	≤15	≤15	≤15	≤15	≤15
Conductivity	uS/cm	72.1	287	303	287	105	400
Cond. (MAC)	uS/cm	No current guideline	No current guideline	No current guideline	No current guideline	No current guideline	No current guideline
Cond. (AO)		No current guidenne	No current guiderne	No current guidenne	No current guiderne	No current guiderne	No current guiderne
Cyanide	mg/L	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.010
Cyanide (MAC)	mg/L	0.2	0.2	0.2	0.2	0.2	0.2
Cyanide (AO)							
рН	pH unit	6.75	7.25	7.22	7.20	6.75	8.15
pH (MAC)	pH unit						
pH (AO)	pH unit	6.5 - 8.5	6.5 - 8.5	6.5 - 8.5	6.5 - 8.5	6.5 - 8.5	6.5 - 8.5
Turbidity*	NTU	0.78	0.36	0.44	0.39	0.51	0.60
Turbidity (MAC)	NTU	(1 -<5 NTU) See	(1 -<5 NTU) See	(1 -<5 NTU) See	(1 -<5 NTU) See	(1 -<5 NTU) See	(1 -<5 NTU) See
Turbidity (AO)	NTU	Guideline	Guideline	Guideline	Guideline	Guideline	Guideline

Appendix D continued– Comprehensive Test Results

			2018 Comp	rehensive Results			
Distribution	Source	Beaver	Okanagan	Lake Pine	Coral Beach Source	Oyama	Kalamalka
Site		VERNON CREEK Intake	OK Pump House	LAKEPINE Pump House	CORAL BEACH Pump House	OYAMA CREEK	KALAMALKA Pump House
Date			June 19 2018	June 19 2018	June 19 2018	June 19 2018	June 19 2018
Calculated Paramete	units						
Hardness (mg/Las CaCO3)	mg/L	33.4	125	131	131	46.7	194
Hardness (MAC) Hardness (AO)	mg/L mg/L	No current guideline	No current guideline	No current guideline	No current guideline	No current guideline	No current guideline
Total Dissolved Solids/TDS	mg/L	38.6	162	173.0	165	54.5	246
TDS (MAC)	mg/L						
TDS (AO)	mg/L	≤500	≤500	≤500	≤500	≤500	≤500
			Total Rec	overable Metals			
Aluminum (total)	mg/L	0.0763	0.0118	0.02	0.0156	0.0793	<0.05
Aluminum (MAC)	mg/L						
Aluminum (AO)	mg/L	0	0	0	0	0	<0.2
Antimony (total)	mg/L	0.003	<0.001	<0.001	<0.001	<0.001	0.002
Antimony (MAC)	mg/L	0.006	0.006	0.006	0.006	0.006	0.006
Antimony (AO)	mg/L						
Arsenic (total)	mg/L	<0.00050	0.00050	0.00055	0.00059	<0.00050	<0.005
Arsenic (MAC)	mg/L	0.01	0.01	0.01	0.01	0.01	0.01
Arsenic (AO)	mg/L						
Barium (total)	mg/L	<0.0050	0.0204	0.0210	0.0235	0.0154	<0.05
Barium (MAC)	mg/L	1.0	1.0	1.0	1.0	1.0	1.0
Barium (AO)	mg/L						
Beryllium (total)	mg/L	<0.00010	0	0	0	<0.00010	<0.001
Beryllium (MAC)	mg/L	No current guideline	No current guideline	No current guideline	No current guideline	No current guideline	No current guideline
Beryllium (AO)	mg/L	No current guidenne	No current guidenne	No current guidenne	No current guidenne	No current guidenne	No current guidenne
Boron (total)	mg/L	0.0057	0.0130	0.0131	0.0126	0.0054	<0.04
Boron (MAC)	mg/L	5	5	5	5	5	5
Boron (AO)	mg/L						
Cadmium (total)	mg/L	<0000010	<0.000010	0.000010	<0.000010	<0.000010	<0.0001
Cadmium (MAC)	mg/L	0.005	0.005	0.005	0.005	0.005	0.005
Cadmium (AO)	mg/L						
Calcium (total)	mg/L	8.05	33.6	34.5	34.1	11.6	43.5
Calcium (MAC)	mg/L	No current guideline	No current guideline	No current guideline	No current guideline	No current guideline	No current guideline
Calcium (AO)	mg/L						
Chromium (total)	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.005
(MAC) Chromium	mg/L	0.05	0.05	0.05	0.05	0.05	0.05
(AO) Chromium	mg/L						
Cobalt (total)	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.0005
Cobalt (MAC)	mg/L	No current guideline	No current guideline	No current guideline	No current guideline	No current guideline	No current guideline
Cobalt (AU)	mg/L	0.00140	0.00070	0.0505	0.00000	0.0100	0.000
Copper (total)	mg/L	0.00142	0.00079	0.0595	0.00093	0.0108	<0.002
Copper (MAC)	mg/L						
Copper (AO)	mg/L	≤1	≤1	≤1	≤1	≤1	≤1

Appendix D continued – Comprehensive Test Results

			2018 Comp	rehensive Results			
Distribution	Source	Beaver	Okanagan	Lake Pine	Coral Beach Source	Oyama	Kalamalka
Site		VERNON CREEK Intake	OK Pump House	LAKEPINE Pump House	CORAL BEACH Pump House	OYAMA CREEK	KALAMALKA Pump House
Date			June 19 2018	June 19 2018	June 19 2018	June 19 2018	June 19 2018
			Total Recove	erable Metals cont.			
Iron (total)	mg/L	0.122	0.013	0.022	0.016	0.121	<0.10
Iron (MAC)	mg/L						
Iron (AO)	mg/L	≤0.3	≤0.3	≤0.3	≤0.3	≤0.3	≤0.3
Lead (total)	mg/L	<0.00020	<0.00020	0.00213	<0.00020	0.00045	<0.001
Lead (MAC)	mg/L	0.01	0.01	0.01	0.01	0.01	0.01
Lead (AO)	mg/L						
Magnesium (diss.)	mg/L	3.23	10.0	10.8	11.0	4.26	20.7
Magnesium (MAC)	mg/L	No current guideline	No current guideline	No current guideline	No current guideline	No current guideline	No current guideline
Magnesium (AO)	mg/L	No current guidenne	No current guidenne	No current guidenne	No current guidenne	No current guidenne	No current guidenne
Manganese (total)	mg/L	0.0064	0.00104	0.00146	0.00120	0.009	0.002
Manganese (MAC)	mg/L						
Manganese (AO)	mg/L	<0.05	<0.05	<0.05	<0.05	<0.05	≤0.05
Mercury (total)	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.00002
Mercury (MAC)	mg/L	0.001	0.001	0.001	0.001	0.001	0.001
Mercury (AO)	mg/L						
Molybdenum (total)	mg/L	0.00032	0.00344	0.00410	0.00382	0.00052	0.006
Molybdenum (MAC)	mg/L	No current guideline	No current guideline	No current guideline	No current guideline	No current guideline	No current guideline
Molybdenum (AO)	mg/L	no current gardenne	No current guidenne	no current guidenne	no current guidenne	no current guidenne	no current guidenne
Nickel	mg/L	0.00081	0.00044	0.00103	0.00047	0.00143	<0.002
Nickel (MAC)	mg/L	No current guideline	No current guideline	No current guideline	No current guideline	No current guideline	No current guideline
Nickel (AO)	mg/L						
Phosphorus	mg/L	<0.050	0	0	0	<0.050	<0.2
Phosphorus (MAC)	mg/L	No current guideline	No current guideline	No current guideline	No current guideline	No current guideline	No current guideline
Phosphorus (AO)	mg/L						
Potassium (total)	mg/L	1.09	2.53	2.6	2.81	1.63	5.1
Potassium (MAC)	mg/L	No current guideline	No current guideline	No current guideline	No current guideline	No current guideline	No current guideline
Potassium (AO)	mg/L	no can chi guidenne	No carrent guidenne	No carrent guidenne	no can chi guidenne	no can chi guidenne	No carrent guidenne
Selenium (total)	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.005
Selenium (MAC)	mg/L	0.05	0.01	0.01	0.01	0.01	0.01
Selenium (AO)	mg/L						

Appendix D continued– Comprehensive Test Results

			2018 Compi	rehensive Results			
Distribution	Source	Beaver	Okanagan	Lake Pine	Coral Beach Source	Oyama	Kalamalka
Sito		VERNON CREEK	OK Pump House	LAKEPINE Pump	CORAL BEACH Pump		KALAMALKA Pump
Jite		Intake	OK Fullip House	House	House	OTAWA CREEK	House
Date			June 19 2018	June 19 2018	June 19 2018		
Silicon	mg/L	6.0	0	0	0	5.7	<5
Silicon (MAC)	mg/L	No current guideline	No current guideline	No current guideline	No current guideline	No current guideline	No current guideline
Silicon (AO)	mg/L	no current gardenne	no current guidenne	no current guidenne	no current guidenne	no current guidenne	no current guidenne
Silver	mg/L	<0.0005	0	0	0	<0.000050	<0.0005
Silver (MAC)	mg/L	No current guideline	No current guideline	No current guideline	No current guideline	No current guideline	No current guideline
Silver (AO)	mg/L	No current guidenne	No current guidenne	no current gardenne	no current guidenne	no current gardenne	no current guidenne
Sodium T-Na	mg/L	2.82	12.1	14.2	13.4	3.85	20.1
Sodium (MAC)	mg/L						
Sodium (AO)	mg/L	≤200	≤200	≤200	≤200	≤200	≤200
Uranium (total)	mg/L	0.000078	0.00249	0.00584	0.00256	0.000273	0.0032
Uranium (MAC)	mg/L	0.02	0.02	0.02	0.02	0.02	0.02
Uranium (AO)	mg/L						
Vanadium	mg/L	<0.0010	0	0	0	<0.0010	<0.01
Vanadium (MAC)	mg/L						
Vanadium (AO)	mg/L						
Zinc (total)	mg/L	<0.0040	<0.0040	0.0411	<0.0040	0.0107	<0.04
Zinc (MAC)	mg/L						
Zinc (AO)	mg/L	≤5.0	≤5.0	≤5.0	≤5.0	≤5.0	≤5.0
			Glossary of	f Terms, GCDWQ:			
<	Less than. Re	eported when result	t is less than the rep	oorted detection lim	nit		
≤	Less than or	equal to. Reported	when result is less o	or equal to the repo	rted detection limit	t	
AO	Aesthetic ob	jective. Refer to GC	DWQ				
MAC	Maximum ad	ceptable concentra	tion. Refer to GCDV	VQ			
MAC	Maximum ad	cceptable concentra	tion. Refer to GCDV	VQ			
TCU	True color u	nit. Color reference	d against a platinum	n cobalt standard			
NTU	Nephelome	tric turbidity unit					
uS/cm	Microsieme	ns per centimeter					
Hardness	The degree of	of hardness of drink	ing water may be cl	assified in terms of	its calcium carbona	te concentration as	follows: soft, 0 to

 District of Lake Country
 2018 Water Operations Annual Report

 Appendix E – Nutrient Sampling Upland Drinking Water Reservoirs

	2018	Nutrients		
Site		BEAVER	OYAMA	DAMER
Date		7-Jun-2018	7-Jun-2018	7-Jun-2018
	A	nions		•
Phosphate (as P)	mg/L	<0.0050	0.0062	<0.0050
No current guidelines		·		
Sulfate	mg/L	1.4	<1.0	1.6
Sulfate (AO)	mg/L	<500	<500	≤ 500
	Genera	Parameters		
Alkalinity, Total (as CaCO3)	mg/L	22.7	13.2	15.9
No current guidelines		·	•	
Alkalinity,Phenolphthalein (as CaCO3)	mg/L	<1.0	<1.0	<1.0
No current guidelines	_			
Alkalinity, Bicarbonate (as CaCO3)	mg/L	22.7	13.2	15.9
No current guidelines			•	
Alkalinity, Carbonate (as CaCO3)	mg/L	<1.0	<1.0	<1.0
No current guidelines				-
Alkalinity, Hydroxide (as CaCO3)	mg/L	<1.0	<1.0	<1.0
No current guideline				
Total Organic Carbon	mg/L	9.75	10.5	17.7
No current guidelines	. –			
Dissolved Organic Carbon	mg/L	8.87	10	15.7
No current guidelines				
Chlorophyll-a	ug/L	0.68	2.9	1.8
No current guidelines				
Colour, True	CU	51	49	110
Colour(AO)	CU	< 15	≤15	≤15
Phosphorus, Total (as P)	mg/L	0.0119	0.0115	0.0213
No current guidelines	. –			
	Calculate	d Parameters		
Hardness, Total (as CaCO3)	mg/L	18.4	15.3	20.4
No current guidelines see definition below				
Total Dissolved Aluminium	mg/L	0.0485	0.0488	0.143
Total Recoverable Aluminium	mg/L	0.0874	0.0659	0.256
Aluminium (OG)	mg/L	<0.1	<0.1	<0.01
Total Dissolved Antimony	mg/L	<0.00020	<0.00020	<0.00020
Total Recoverable Antimony	mg/L	<0.00020	<0.00020	<0.00020
Antimony (MAC)	mg/L	0.006	0.006	0.006
Total Dissolved Arsenic	mg/L	< 0.00050	<0.00050	<0.00050
Total Recoverable Arsenic	mg/L	<0.00050	<0.00050	<0.00050
Arsenic (MAC)	mg/L	0.01	0.01	0.01
Total Dissolved Barium	mg/L	0.0053	0.0066	0.008
Total Recoverable Barium	mg/L	0.0059	0.0071	0.0093
Barium (MAC)	mg/L	1	1	1
Total Dissolved Beryllium	mg/L	<0.00010	<0.00010	<0.00010
Total Recoverable Beryllium	mg/L	<0.00010	<0.00010	<0.00010
No current guidelines				

District of Lake Country2018 Water OperationAppendix E continued – Nutrient Sampling Upland Drinking Water Reservoirs2018 Nutrients

	2018	Nutrients		
Site		BEAVER	OYAMA	DAMER
Date		7-Jun-2018	7-Jun-2018	7-Jun-2018
	N	/letals	•	
Total Dissolved Bismuth	mg/L	<0.00010	<0.00010	<0.00010
Total Recoverable Bismuth	mg/L	<0.00010	<0.00010	<0.00010
No current guidelines			•	*
Total Dissolved Boron	mg/L	0.0054	<0.0050	< 0.0050
Total Recoverable Boron	mg/L	0.0059	<0.0050	< 0.0050
Boron (MAC)	mg/L	5	5	5
Total Dissolved Cadmium	mg/L	<0.000010	<0.00010	< 0.000010
Total Recoverable Cadmium	mg/L	<0.000010	<0.00010	<0.00010
Cadmium (MAC)	mg/L	0.005	0.005	0.005
Total Dissolved Calcium	mg/L	4.91	3.82	4.62
Total Recoverable Calcium	mg/L	5.54	4.17	4.99
No current guidelines				
Total Dissolved Chromium	mg/L	<0.00050	<0.00050	<0.00050
Total Recoverable Chromium	mg/L	<0.00050	<0.00050	0.0007
Chromium (MAC)	mg/L	0.05	0.05	0.05
Total Dissolved Cobalt	mg/L	<0.00010	<0.00010	<0.00010
Total Recoverable Cobalt	mg/L	<0.00010	<0.00010	0.00011
No current guidelines				
Total Dissolved Copper	mg/L	0.00097	0.00124	0.00231
Total Recoverable Copper	mg/L	0.00128	0.00141	0.0094
Copper (AO)	mg/L	<1	<1	≤1
Total Dissolved Iron	mg/L	0.093	0.07	0.124
Total Recoverable Iron	mg/L	0.169	0.139	0.247
Iron (AO)	mg/L	≤ 0.3	≤0.3	≤ 0.3
Total Dissolved Lead	mg/L	<0.00020	<0.00020	<0.00020
Total Recoverable Lead	mg/L	<0.00020	<0.00020	0.00029
Lead (MAC)	mg/L	0.01	0.01	0.01
Total Dissolved Lithium	mg/L	0.00043	0.00058	0.00125
Total Recoverable Lithium	mg/L	0.0006	0.00068	0.00150
No current guidelines'				
Total Dissolved Magnesium	mg/L	1.49	1.39	2.15
Total Recoverable Magnesium	mg/L	1.71	1.58	2.48
No current guidelines				·

Appendix E continued – Nutrient Sampling Upland Drinking Water Reservoirs

	2018	Nutrients		
Site		BEAVER	OYAMA	DAMER
Date		7-Jun-2018	7-Jun-2018	7-Jun-2018
	Metals	Continued		
Total Dissolved Manganese	mg/L	0.00251	0.00179	0.00496
Total Recoverable Manganese	mg/L	0.00553	0.00599	0.00706
Manganese (AO)	mg/L	<0.05	<0.05	< 0.05
Total Dissolved Mercury	mg/L	<0.00010	<0.00010	<0.00010
Total Recoverable Mercury	mg/L	<0.00010	<0.00010	<0.00010
Mercury (MAC)	mg/L	0.001	0.001	0.001
Total Dissolved Molybdenum	mg/L	0.00017	0.00013	0.00023
Total Recoverable Molybdenum	mg/L	0.0022	0.00014	0.00025
No current guidelines				
Total Dissolved Nickel	mg/L	0.00066	0.00105	0.00198
Total Recoverable Nickel	mg/L	0.00007	0.00113	0.00232
No current guidelines				
Total Dissolved Phosphorus	mg/L	<0.050	<0.050	<0.050
Total Recoverable Phosphorus	mg/L	<0.050	<0.050	<0.050
No current guidelines				
Total Dissolved Potassium	mg/L	0.86	0.92	1.37
Total Recoverable Potassium	mg/L	0.93	1.01	1.49
No current guidelines				
Total Dissolved Selenium	mg/L	<0.00050	<0.00050	<0.00050
Total Recoverable Selenium	mg/L	<0.00050	<0.00050	<0.00050
Selenium (MAC)	mg/L	0.05	0.05	0.05
Total Dissolved Silicon	mg/L	4.5	4.4	6.9
Total Recoverable Silicon	mg/L	4.5	4.3	6.9
No current guidelines				
Total Dissolved Silver	mg/L	<0.000050	<0.000050	<0.000050
Total Recoverable Silver	mg/L	<0.000050	<0.000050	<0.000050
No current guidelines				
Total Dissolved Sodium	mg/L	1.86	1.82	2.11
Total Reocoverable Sodium	mg/L	2.07	2.09	2.37
Sodium (AO)	mg/L	≤ 200	≤ 200	≤ 200
Total Dissolved Strontium	mg/L	0.0294	0.0270	0.0288
Total Recoverable Strontium	mg/L	0.0320	0.0286	0.0311
No current guidelines			-	-
Total Dissolved Sulfur	mg/L	3.3	<3.0	<3.0
Total Recoverable Sulfur	mg/L	<3.0	<3.0	<3.0
No current guidelines			-	
Total Dissolved Tellurium	mg/L	<0.00050	<0.00050	<0.00050
Total Recoverable Tellerium	mg/L	<0.00050	<0.00050	<0.00050
No current guidelines	1		n	
Total Dissolved Thallium	mg/L	<0.000020	<0.000020	<0.00020
Total Recoverable Thallium	mg/L	<0.000020	<0.000020	<0.00020
No current guidelines				

District of Lake Country 2018 Water Operation Appendix E continued – Nutrient Sampling Upland Drinking Water Reservoirs

	2018	Nutrients		
Site		0.0022	0.00014	0.00025
Date		0-Jan-1900	0-Jan-1900	0-Jan-1900
	Metals	Continued		
Total Dissolved Thorium	mg/L	<0.00010	<0.00010	<0.00010
Total Recoverable Thorium	mg/L	<0.00010	<0.00010	<0.00010
No current guidelines	·			
Total Dissolved Tin	mg/L	<0.00020	<0.00020	<0.00020
Total Recoverable Tin	mg/L	<0.00020	<0.00020	<0.00020
No current guidelines				
Total Dissolved Titanium	mg/L	<0.0050	<0.0050	<0.0050
Total Recoverable Titanium	mg/L	<0.0050	<0.0050	0.0069
No current guidelines				
Total Dissolved Uranium	mg/L	0.000033	0.000043	0.000128
Total Recoverable Uranium	mg/L	0.000059	0.000047	0.00014
Uranium (MAC)	mg/L	0.02	0.02	0.02
Total Dissolved Vanadium	mg/L	<0.0010	<0.0010	<0.0010
Total Recoverable Vanadium	mg/L	<0.0010	<0.0010	0.0011
No current guidelines				
Total Dissolved Zinc	mg/L	<0.0040	<0.0040	<0.0040
Total Recoverable Zinc	mg/L	<0.0040	<0.0040	0.0064
Zinc (AO)	mg/L	≤ 5	≤5	≤ 5
Total Dissolved Zirconium	mg/L	0.00050	0.00051	0.00156
Total Recoverable Zirconium	mg/L	0.00049	0.00057	0.00147
No current guidelines				
Glossary of Terms, GCDWQ:				
<	Less than. R limit	eported when resu	It is less than the rep	ported detection
≤	Less than or reported de	equal to. Reported	l when result is less o	or equal to the
AO	Aesthetic o	bjective. Refer to G	CDWQ	
MAC	Maximum a	cceptable concentr	ation. Refer to GCDV	VQ
OG	Operational	l guidance values. R	efer to GCDWQ	
тси	True color u	nit. Color reference	ed against a platinum	n cobalt standard
NTU	Nephelome	tric turbidity unit		
uS/cm	Microsieme	ns per centimeter		
Hardness	The degree	of hardness of drin	king water may be cl	assified in terms of
	its calcium o	arbonate concentra	ation as follows: soft	, 0 to <60 mg/L;
	medium ha	rd, 60 to <120 mg/L;	hard, 120 to < 180 m	g/L; and very hard,
	180 mg/L an	d above.		

Appendix F – Beaver Lake & Oyama Lake Levels and Discharge

Appendix G – Drought Forecast for Beaver Lake & Oyama Lake

Appendix H – Kalamalka UV Station log Sheets

															Ja	an	ua	ry	20	18														
JAI	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	J	4	ω	N		DAY		
NUARY		1200	0390	anco	Tice				11/00	NACO	9:04	SHS	0750	0915	0850	1050	9:30			1245	1200		10'30	630		5201		1340	1200	Heo	1341	TIME		JANUA
		J. R.	1.2	710	715			Res	RA	RAB	Walder	MAN	J.C.	J.R	Y.C	35	35		1000	35	803		Rob	er3		YE		EOS	RB	hud.	22	Chk'd		RY
		2911137	2909424	2909440	7909257			2907219	3905766	L85500	2905292	2903951	2903 298	2902206	2901491	2901250	2901076			2597529	5941485		593413C	3893481		2892294		2211198	19901 USB	2887397	0216882	401 (m3)	Totalizer	FLC
		3 330 852	3 330613	3379102	1228727			3326767	3326453	3325981	2324225	1924CEE	3306056	3 3 2 3 8 2 3	3352663	3322643	3320957			3320307	3319791		3319653	3319321		3318724		3316444	3316216	3315180	1237155	402 (m3)	Totalizer	WG
		3294	3293	3242	3291	10		226	3968	1 1365	1 9382	3285	1 852 6	3284 1	1 6825	3282	3281 12			32791	3978 6		3277 1	3 9 Lee		1 1235		3273 1	n tete	3271 1	1 1225	#	Starts	Rea
		2202 2	12190 2	1190 1	17/2017			2175 8	19164 3	e, 1910	21612	2151 2	2192 2	2139 2	2134 2	2132 21	2131 24	7		2105 2	A 5016		PC LSD	15 1 YOF		2 6902		Yelo A	te agot	2048 24	2046 24	(hrs)	Time W	actor 401
		512 3	512 3	2113	510 3			507 32	506 3	605 3	504 3	503 3	501 3:	200 3	699 23	188 3	497 32			494 3.	A3 32		A1 20	9D 32.		188 38		25 181	166 32	85 32	181 22	#	Vipes St	
L	-	242 13	212 13	240 13	34 132			36 134	235 15	35 139	524 13	23313	232 13	23/ 13	30 13	130 134	25 134			27 13-	151 Se		14 134	73 134		22 139		20 134	19 134	18 134	18 133	# (h	arts Tir	React
┝		508 25	506 25	195 25	52 261			178 355	416 928	172 358	46325:	460 233	(58 257	45Z 25	148 257	48 257	36 257	257		31 252	USE LE		095C 9C	34 2568		952 02		03 3560	01 356	00 256	41 25%	rs) #	ne Wip	or 402
401/402	401/402	8 401/402	Y (401/402	86 401/402	X- 401/402	401/402	401/402	3 401/402	401/402	C 401/402	79 401/402	18 401/402	7 401/402	76 401/402	15 401/402	15 401/402	3 401/402	3 401/402	401/402	2.2 401/402	0 401/402	401/402	(401/402	5 401/402	401/402	6 401/402	401/402	4 (401/402	3 (40)/402	2 401/402	401/402		es Reactor	Bunning
			38	44						181			66.1							96.5			47	P		0 89.3		101	45		999.6	(W/m2)	-	5
F	t		61.7	11						69			86.0							73.9			133	3		74.3		137	132		74.0) (W/m2)	2	amp Inten
			87.7	143	-					58			128.5							関ラ	145		161	đ		141.1		158	164		134.8	(W/m2)	3	sity
			583	64						85			139							67	1		28			149		83	8		68.4	(W/m2)	UV SP	Do
			4.1	4.17						3.81	*		3.98							4,15			5612			4.13		4.50	9448		5.06	Log	Validated	sage
		þ	28	19						20			39	P	Ø	2				40			38			29		20	2	¢	39	(LPS)		Flow
		11.8	91.9	92.9	5.6					41.5	1		81.5	91.5	41.5					91.9			11.6			91.6		41.7	91.9	92	816	%		UVT
			3.8	4/3						5. 1	2		4.0							5.3			5.8			4.3		Sig	5.8		4.3	(KWH)	Bank 1	Po
			1.7	15						E			6.0							2.5			20			2.5		30	3.0		2.5	(KWH	Bank 2	Wer

February 2018

EBF	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	ω	12	1	10	9	8	7	6	GI	4	ω	2	-	AY		Ξ
NUARY				1160	1101-	lorac	9145	Trop	KISOO	1330	1330			8:30	S:a	NAO	0910	430	0930	0740		1110	9170		915		01120	Sico		248	1000	TIME	in the	EBRU.
				Eas	524	715	71-	11-	Tr	608	J.P.			They	Miler	Reg	2.9	ROA	2-9	2-9		2-9	25		2-5'		4.0	RUP		Reg	203	Chk'd		ARY
				2927521	recese	2917031	2427031	2926785	JHYNRL	3429 6246	2926283			2344762	8423120	Saureles	2921216	12240120	2919140	5918765		2917057	2915403		2414601		2914372	SCHU 6		2912569	96119330	401 (m3)	Totalizer	E
				335 1664	5350561	3349852	3348/95	3348665	3346 336	3344659	3344143			3341708	2341485	3341462	3341180	334 1180	3360580	3339042	•	2 3 3 3 8 6 7 9	3338566	10	3337129		3326 808	3334567		3333049	D1 L1 228	402 (m3)	Totalizer	-OW
				3322	3321	3320	3320	2319	33.15	3319	3316		6	3311	2310	3310	3307	3306	3305	3304		3303	3364		2320		3299	BURE		3296	3245	#	Starts	70
				12320	12318	12316	12316	123 14	1233	17313	12310		11	6601	1922 B	Pural	12226	12262	12260	12257		12245	22221		12227		12 226	12219		E EICH	11SI	(hrs)	Time	leactor 401
				2637	3536 3	2535-3	SS	152	5533	2533 3	2530 3			3529 3	35263	gege	2526 3	953A 3	2323	2522		2521 3	2521		7579 -	-	1152	1516 3		1514 3	512 3	#	Wipes	
				1 692	269 13	269	1267	1 1926	1 2926	265 1	264 1			38015	1 4 50	1 152	2551	1 552	1 1526	1522		1 7539	1 155		1 642		1 1 12 4	51 940		512 13	544 3	#	Starts 1	Rea
_				1E 8938	R 059	3845-	3633 7	3624 7	2010	A 8095	3604 2			12602	2584 20	PC 135	3587 2	N 7.95	5578 2	3567 2		2 326	367 2		333 2	_	35% 2	534 35		Se les	Se HIS	(hrs)	Fime W	ctor 402
4	4	4	4	616 4	615 4	2614 4	613 4	617 4	6/1 4	0 4	669 9	4	4	06 4	205 4	05 (4	603 4	203 4	601 4	600 4	4	589 4	598 4	4	596 4	4	596 4	43 4	4	G 4	90 4	*	lipes n	
01/402	01/402	01/402	.01/402	01/402	01/402	01/402	.01/402	01/402	01/402	01/402	BAAD2	01/402	01/402	01/402	01/402	01/402	01/402	01/402	01/402)	01/402	01/402	01/02	01/402	01/402	01/402	01/402	01/402	01/402	01/402	01(402)	01/402	in a second	Reactor	
					28			86			91.9					67	-		81.2			2.58	73							2		(W/m2)	1	La
					66			64	-		64.1					12			62.1			639	2b							61		(W/m2)	2	np Intens
					116			115			122.2					Ē	1		87.0			90.0	133							98		(W/m2)	4	ity
					62			02	1		60.9					3			68.6			66.3	68							60		(W/m2)	UV SP	Do
					3.76			\$ 3.90	E .		3,96				1	4.00			3.85			3.97	400							3.81		Log	Validated	sage
					25			45			39.9					2	A		39.1	Ø		30	19				Ø			39		(LPS)		Flow
					91.3	26	9	16	69	-	3.96					91.4	41.2		91.3	92.1		91.3	84.8		91		91.6			90.7		%		UVT
					4.5			4.3			4.4					42			3.2			3-8	42							3.7		(KWH)	Bank 1	Po
					2.5			25-			2.5					2.6			1.2			1.7	26							1-1		(KWH)	Bank 2	Wer

															<u>1</u>	Ma	rcl	<u>ו 2</u>	01	<u>8</u>														
W/	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	ъ	4	ω	2	-	DAY	-	
TRCI		00:00	630	1345	1230	000	00	200	1130	800	1130	252	0212	9:0>	Six	1350	800	0520	1330	040	1230	0920	800	から	050	1000	920	200	630	545	9.30	TIME		MARC
			8071	RB	ESS .	23	6.3	53	Son	KOB	1203	BA.	2017	MAN	MOM	35	Page	51	RA	Pin	4.1	JR	TC	RBB	End	63	PB	Ron	83	PLB	PA	Chk'd		Ŧ
			179 EHBE	PH1133	Shibhhe	0434220	LISUEUE	98CHEUR	9434045	31272	SCHER	52 15 2145	S9400	2935220	£464569	2934977	29.3439	2932267	Lince 550	2930558	2929257	5358989	2928785	SHUS CR	1059268	1058066	010826PG	338015	COSC LEVE	2927764	1254666	401 (m3)	Totalizer	FLO
		100 M	3374907	3374907	3374652	337445	33JJUSE	3371779	3370968	3370743	8316518	3370071	165395E	3367981	3366794	3365273	3365039	326301	3364778	3364674	3364540	3263721	3362egy	3360575	3360294	CCRSTEE	3357128	3356786	3355144	3353771	3753560	402 (m3)	Totalizer	WC
			3344	3343	3343	3342	3341	3340	3339	3338	3228	3336	326	3222	3334	3334	3333	12251	3331	3330	3330	3755	3728	3327	3326	33%	JJX	3324	3394	3322	3324	76	Starts	R
			12432	12420	12416	99461	9 antil	UNO4	Sohel	1390 2	5%61	12317	1377	1) 6 E E I	6373 d	2373	12367 4	12351 8	12354	123HD	2337 2	1(331	12329.	19399 8	Level	S/CCCI	56561	123742	ERE!	222	2320	(hrs)	Time	actor 401
			3563 3	19561 3	19261 3	360 3	859 3	558 3	SSJ 3	1555 3	855 3	53 3	55H	0552 3	1550	2551 3	3549 3	5423	Lhe	346	516 3	2544 3	1543 -	9542 3	541 3	1541 3	540 3	539 3	53A 3	3535	5 1256	#	Wipes	
			1291	182	1 ObC	1 NR	1 22	1 590	12KJ	1986	1 587	1 1-82	283	1 C8 61	32821	281 1	1 082	1627	1 348	3278 1	1221	276 1	3275-1	275 1	1 46	27	20	1 PLE	1116	271 1	SI OLP	#	Starts	Rea
			13924 3	3824 3	e reg	3621 3	386 3	3802 3	3796 3	3 194 3	27929	311 2	CBUL	Ch tt	37662	3755 2	e ESUE	2 545	3751 2	3150 3	2 6)29	3741, 5	3732 -	37212	STIG 2	8107 3	e clore	e 4698	3682 3	633	R DL9	(hrs)	Time V	ictor 402
			645	949	944 (643 6	641	144	640	639	538 6	637 (559	1234 ·	52	632 .	631 6	059	5696	2629 4	829	t297	3292	1695	, heg	623 1	52	1691	000	1 519	319	#	Vipes	
401/402	401/402	401/402	401/402	401/402	401/402	401/402	401/402	401/402	401/402	401/402	401/402	401/402	401/402	401/402	401/402	401/402	401/402	401/402	401/402	101/402	403/402	101/402	101/402	101/402)	101/402	101/402	101/402	101/402	10)/402	101/402	101/402		Reactor	
		60			28	5		139			63	5		92.2			63			95.8	1.53		87	86			67		٢9	100		(W/m2)	1	Lar
		70			106	III		49			103			64.5			69			6712	70.4		73	89			19		1r	44		(W/m2)	2	np Intens
		12			136	140		134			LCI LCI			612			301			116.7	112.1		124	141			116		119	118		(W/m2)	3	ity
		56		-	29	S.		55			S			02.7			90			62.6	63		52	63			3		63	63		(W/m2)	UV SP	D
		3.81			16.71	4.30		4.57			4.31			3.56			395			4.04	3.95		4.08	4.03			4.02		4.02	3.89		Log	Validated	sage
		154	2	1	-18	98	-	39			5			35			35	Ø	ø	37,7	39	0	38	39			29		37	39		(LPS)		Flow
		41.0		1	10.1	10.8		11			40.4		-	90.5			4.10	3116	91.9	92.4	91.3	91.9	916	91.8			40.8		00.7	9.0b		%		UVT
		4.2			2.2	59		6.0			58			45			4.2			1-1-	4.3		4.3	1.4			5.5		4.2	43		(KWH)	Bank 1	Po
		4.0	1		3.6	3.0		36			3.0	1		2.5			2.6			215	26		22	2isi			45		26	00		(KWH)	Bank 2	wer

																<u>Ar</u>	oril	20)18	<u>3</u>														
A	31	30	29	28	27	26	25	24	23	22	21	20	19	81	17	16	15	14	13	12	11	10	9	∞	7	6	თ	4	ω	2	-1	DAY		
PRIL			00:10		1036	2100	115	7146	11:07		Sit	1200	900	SHLO	1130	1100	1165	1030	T	8:20	logo	lugi	0410	4130	2:20	0045	10 56	930	5580	6.30	7	TIME		APRIL
			in		THE	712	mend	71=	7/2		MAN	RAG	Rus	Piry	RUS	83	J.d.	5.2		-7/-	603	RA	J.C	Th	t	50.	272	5805	DE	E		Chk'd		
		F	JAP2402		2967657	2967657	-65496P	2467116	2466726	h t 9 h 9 b 6	2963535	Checabe	ERGAR	2959009	17988-SUC	2922084	2955370	2954613		2453057	2136.56	2953574	5222224	2457346	2452103	2952103	2951876	3950644	2968831	2948114		401 (m3)	Totalizer	FLO
		ę	(Shoals)	•	2324862	4961662	13390048	1092622	3387 295	S.S.A. 852	1202828	3366 842	3386757	9559828.	11 59855	3386148	3386 063	3385824		3383924	3383664	338212	3380331	3379742	3378540	3 376751	3376166	3375899	3375849	3375624		402 (m3)	Totalizer	WC
		2370			3367	222	3366	325	3364	3363	3363	3362	3361	1988	3360	3359	2359	3328		3356	3355	3354	3754	5353	3352	3352	3351	3349	3368	3348		#	Starts	R
		1950			12605	12605	12605	12601	12598	hase!	94:581	OLSEI	1355	12544	Ebsel	15261	12519	12516		12502	10561	12499	12199	12497	1245	12995	12:93	13465	12671	12467		(hrs)	Time	eactor 40
		5599			2596	2596	3595	1594	2593	1556	SSO	1986	LSSE	2586	59.50	£85e	2582	1580		2578	2577	3576	2576	7575	2574	2579	2573	25 11	2569	1568		#	Wipes	1
		1126	3211		1 8156	3317 1	33171	32/1 7	3314 1	1 1/52	3313 1	2155	3312 1	3311	3310 1	3310 1	3309	2300		305	3306 1	V 505.5	330 4	1 4052	223	1 2065	1 1050	3299 1	3299 1	398		#	Starts	Rea
		t 2004	1015 91		3968 2	347 20	SUSSIG	3914 2	39/4 24	39142	391320	3910 36	PR DISS	3929 21	PR LOGS	36 908	29165 2	3903 2		R 686	3687 21	R LUSS	381 2	2 0988	12 15851	3838 26	2834 20	PP 7535	3832 2	15 OL 35		(hrs)	Time W	ictor 402
4(4(9.20	10 40	40	674 40	77 40	4 40	70 40	68 40	68 40	67 (40	66 40	66 40	265 AC	64 40	24 AC	61 100	162 AC	40	60 40	59 40	58 40	196 40	55 40	5-1 40	52 40	51 40	40	5(9 40	g 40	40	#	ipes Re	2
)1/402)1/402	3/402	1/402	11/402	11/402	1/402	1(402)	11402	1/402	1/402	1/402	1/402	1/402	1/402	1/402	1(402)	¥402	1)402	1/402	1/402	1/402	1/402	1/402	1(402)	1/402	1/402	1/402	1/402	1/402	1/402	W402 0	-	actor	
			162 1		67		56.2	26			11		00	591 6		31 6	9 2 6	9 09			20 6			741 6							11.6 1	W/m2) (V	-	Lamp
			26 10		1		00,1 1	50 /	_		J.		E I	2.9 100		3	11 5.	1.2 11	-		1 1			1 11							21.4 13	<i>ll</i> m2) (W	2	Intensity
-			1 19		5 14		14 56	5 51	>		2695		5	43		4 60	1.7 54	15 57			5			5							1.2 8,1	lm2) (Wir	3 UV S	
\vdash			1915 11	3	7 3.7	2	3 40	7 5,70			2 4.3-	0	1 4.07	7 3,86		3.95	4 3.8	9 3.89			2.2.9			9 8.8							4,30	n2) Log	P Validat	Dosage
┝			4.1		Sc 8	2	1 39-3		3		+ 57.	4	w	3		38	50	36			30	-	6	3		Ð	8		¢		x	(LP	8	Flor
\vdash		\vdash	- 66.	ALLAN	41.5	74.5	N 93.0	1 72	333	,	14 45.		93	92.2		41.5	91.3	12		315	92.	>	91.	16	97.	91.	91.		91.6		90,3	%		N N
			4 1.4		23		S.R	11.5)		50		4.4			4.4	12	162		1	5.4 6	-		4.3		~	, ,		T		8'5	(KWH	Bank 1	-
			5.8	1	2.7		2.4	2.5			3.0		20			2.5	2.6	2.6			20,			2.5							3.6) (KWH)	Bank 2	ower

																		_																
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	6	сл	4	ω	2	-	DAY		
NAY	11100	10145	1400	lino	10ing	Rivo	9105	11.10	10140	10150	(145		1030		1245	411	520	830	11:45	34.8	1300	24.17	1100	1332	50		SW	600	130	25	CON.	TIME		MAY
1	-TK	1	Ko3	Port -	11:	1	17	1	H.	R	Pans	RAR	B	405	Ron	75	Kag	SP2	MF	MA	710	103	KAB	B	220	PQ3	Rus	RAB	TIS	203	Reg	Chk'd		
	119080	3117663	3116449	3112376	3110591	3106011	310/694	3096654	3093574	3090995	383525	3676842	3067621	JOLOFIL	369430	3044100	323640	391829	302678:	302039	2619619	3014894	3011773	309707	300-4251	ER 946C	1122396	7590Sbe	2976768	PH PLAC	3769130	401 (m3)	Totalizer	T
	3474608	392224	3472994	3464 720	3464096	3460898	L1585h	3457047	345-4014	1080345	3446938	343627	3440382)	343 4412	Leisth	3430879	3428934	342716	3421612	73420455	3418481	3416718	3415630	3410345	1 Eggons	340/323	3405846	3402641	3405373	3405373	BCSECIL	402 (m3)	Totalizer	LOW
	3407	3463	3364	2344	342	14.2	3384	3388	3385-	3383	3363	2883	3383	3363	383	2383	583	383	3382	3381	3379	3377	3375	3374	7274	HLSS.	3374	5373	3373	3373	3372	#	Starts	
	13091	13094	13079	1306	15059	13045	12031	13015	13006	12997	12974	1440	SELAI	COLEI	19879	1521	SCBPI	East!	12799	12780	12774	59Ler	19754	LALPH	15101	SARI	ESEL	1:292.0	1264	16961	12616	(hrs)	Time	Reactor 4
	2654	1652	450	949	7647	2645	2643	2641	2439	2630	22	834	2632	9639	8696	2626	he90	CC9E	2621	2620	2618	9195	4196	2613	1196	0196	LORE	5095	4092	C096	1095	#	Wipes	2
	1291	Bogy .	13079	30%	13054	13045-	1231	13015	13006	12997	12974	2 bttx1	SCH	e Cobel	19879 3	1521	8 SCBPI	E COSCI	12799 2	12780 2	12774	19763	19784 3	Chler	12131 9	SARI	1252	12921 J	12645	16901	12616	(hrs)	Time	leactor 401
	2654	1/22	250	34%	1647	7645	2643	2641	2639	252	329	834	632	9636	8096	2626	14-64	6695	129	620	8197	9195	1014	513	101	09	1.096	Sog	2604	200	1096	-##	Wipes	
	3417	3412	340.7	SAR	797	1/22	545	3394	3341	7827	2981	1453	LPES	551	355	1 846	3542	337	3337	335	3333 /	331	1055	665	145	3396	145	145	525	255	322 1	-##	Starts	Ro
	14245	H139	14232	1999	0124	14200	14193	14/88	KLIM	2914	LAINZS .	14143	4131	Eennl	4113	8604	Hool "	H9.91	990H	HOFH	8504	ESOH	40418	4039	HOR	4022	Crahi	1019	HOI7	LIP:	4009	(hrs)	Time	actor 40)
	2724	THU	Dele	SILE	1716	2715-	2714	213	1112	2709	LOLE	SPLE	HOLE	EDE	and	2698	9290	2024	2693	2691	2690	SSPe.	2687	396	3683	est	3651	1.896	2680	0898	1679	##	Wipes	2
401/402	401)402	401/402	404/402	401/402	401/402	4011402	401/402	401/402	401/402	401/402	401/402	401/402	401/402	401/402	401/402	401/402	(401)/402	401/402	401(402)	40)/402	401/402	401/402	401/402)	401/402	401/402	(40)/402	401/402	401(402)	401/402	(40)/402	401/402		Reactor	Punning
	111	124	124	179		118	841	181	179	811	5	106	IIA	108	116	185	PIIA	123	180	11S		121	911	LLI	Lill	11:3	311	5	116	105		(W/m2)	-	La
	144	5	3	137		145	135	137	136	147	127	27	143	130	140	138	141	138	136	133		141	32	132	ig g	134	131	63	127	120		(W/m2)	2	mp Intens
	181	198	ta	185		181	181	881	481	180	175	691	183	166	180	881	CAL	185	185	175		531	181	C81	179	176	163	110	181	081		(W/m2)	~	ily
	8/1	128	100	135		120	133	130	131	126	1/1	561	961	120	126	129	124	124	135	127		124	136	132	181	126	5	60	125	181		(WIm2)	UV SP	
	3.74	3.77	40%	3.80		3.71	3.78	3.95-	3.85	3.48	295	3:20	5.54	3.12	3.51	4.07	32.5	3.68	3.76	3.40		3.67	364	3.76	91:5	342	3.49	2.27	3.47	He S		Log	Validated	osage
	28	57	28	38		80	58	50	28	7 #7	88	44	12	53	93	83	3	2	de	7	93	93	95	45	55	619	43	39	50	53		(LPS)		Flow
	0.16	91.4	4.15	40.5	0.26	41.4	41.4	97.9	616	719	616	91.4	bilb	9.00	See	91.5	91.0	44.7	92.4	91.2		995	91.3	946	91.7	9.4	41.41	91.8	414	414		%		UVT
	27	7.7	7	54		7.5	34	27	77	K	22	1.5	1.5	7.5	7:5-	82.	2.5	7.6	SC	1.6		7.6	1.7	7.7	25	25	15	1-1-1	52	2.6		(KWH)	Bank 1	Po
	4.1	41	1	25		46	1.7	3.8	3.7	4.0	4.0	4.S	0.2	4.0	4.0	82	4.0	1.1	3.5	1,1		41	5.7	3.7	40	4.0	4.1	3.6	4.0	13		(KWH)	Bank 2	Wer

														_		<u>Ju</u>	ne	20	18															
J	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	1	10	9	8	7	6	თ	4	ω	Ν		DAY		
UNE		11130	mu	10\$0	11450	KING	930	J'	8:70	1000	iuvir	1130	3:25	900	9105	12 18	8.20	1330	15:20	1200	9115		1×	0518	930	10130	1200	5	8569	÷,	0561	TIME		JUNE
		Ľ.	75	KOB	5	11:	17.	MNW	MIN	209	TR	ROB	7/1	Pos	MK	MK N	16	603	コに	11:	J.C		4	TF	Purs	JE	RS	Eng	Hideh	MUS	RAR	Chk'd		
		3H143	3189499	890L915	3183576	718 1579	2178920	Loh es	SEATES	3171715	311515	LLEBAR	3159455	3157836	3156115	3152689	3/5605-1	3028418	3147655	1 429415	3145060			3 140656	313 834 9	3134838	3132717	3130831	S028218	3125718	3123543	401 (m3)	Totalizer	E
		3547387	3544862	1,01,01565	323882.6	35368	3534116	SBOSIO	E 108255	3525423	3520219	3219255	3516652	3510606	350 5847	350 4152	3521897	32058	3499684	34984/2	OSIL HE			3492627	3489385	8241845	hBES 845	3483756	3481341	3478202	3476861	402 (m3)	Totalizer	.OW
		7504	3501	3498	3494	3491	34186	3483	L'EINC	SLAS	3475	3477	3473	RLHE	3470	3467	3462	3454	3485	1.245	LMAS			3436	3433	3430	hehs.	SHIG	3415	2413	3411	#	Starts	71
		13327	64.El	13311	13300	12294	13285	Et CEI	OUCS!	19561	13261	1351	12224	13219	13213	13202	13/43	13169	13185-	13180	13175-			13160	23123	13141	13133	1313-1	13119	13110	13100	(hrs)	Time	eactor 40
		2708	2706	2104	2702	2701	2694	3696	3695	5695	2693	2691	5832	889e	2686	2684	2882	089E	2678	2676	7674			269	L99C	2665	599C	1996	3659	2658	9929	#	Wipes	01
		4155	35-16	3512	8055	2505-	3500	3496	S.L.R.	3489	8845	SHRLO	2486	3485	3483	3480	3476	3472	3469	3465	3461			3449	341414	3441	3435	3431	3427	343	1048	#	Starts	R
		14486	14478	142194	14457	1445-1	14442	14430	14421	14414	14396	1982	14387	14365	14350	14344	14337	(4)332	14329	14325	14320			434	14304	14285	OSthi	SLEAP	tabhi-	HAST	eseni	(hrs)	Time	eactor 40
		2779	2778	9776	2773	7467	2769	Party	allo	PPLE	2762	276D	2760	851.C	2756	2754	2752	also	2749	LH2	2745			2739	2737	2736	hr. Le	ere	Lott .	FBER	946	#	Wipes	12
401/402	401/402	401/402	401/402	401/402	401/402	401/402	401/402)	401/402	401/402	401/402	401/402	(401/402	401/402	403/402	407/402	401/402	401/402	401/402	401/402	401/402	401/402	401/402	401/402	401/402	401/402	(401/402	401/402	401/402	401/402	401/402	(40)/402		Reactor	Dunning
		1/21	15-4	161	151	541	. 17			891	117	111	117	LIII	113		169							191	114	125	EH	E31	CS1		hll	(W/m2)	1	La
		117	hill	116	114	129	131			Lei	hhl	141	147	147	14S		124							124	151	15-3	139	137	137		145	(W/m2)	2	mp Intens
		109	109	114	99	コン	114			109	173	PLI-	177	177	171		117							123	178	180	411	331	431		981	(W/m2)	3	sity
		211	122	LS	2.88	117	120			181	121	Ī	130	LC1	123		122							124	511	125-	119	130	134	2	3.74	(W/m2)	UV SP	D
		3.51	15.2	353	203	3.60	3.56			3.36	7.34	35.38	3.34	3.40	3.42		3.66							372	3.65	89'2	3:55	3.94	15.5		3.71	Log	Validated	osage
		48	-58	57	18	5.8	63			98	z	88	93	91	88		28							25	28	58	54	53	59		48	(LPS)		Flow
		116	603	90.1	38	2113	306			90.2	40.1	5.G	500	90.6	90.8	92.6	912		92.5	434	816			71.5-	91.5	90.7	90.7	91.5	613		L'16	%		UVT
		2.9	7.8	3.2	7.9	7.7	7.9			1.1	25	SiL	32	7.7	7.6		7.9						1	7.8	7.6	7.6	7.6	7.5	2+		9.6	(KWH)	Bank 1	Po
		8 '8	2.0	3'E	3.8	3.8	3.8			2.2	0.2	4:0	17	1.1	4.1		3.4							3, 8	4.1	4.1	9.1	5.5	3.0		4.1	(KWH)	Bank 2	wer

																<u>J</u>	ıly	20	18															
L	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	6	5	4	3	2	-	DAY		
ULY	E	020	10.70	Girls	7,40	1415	1030		FES	SHID	3:20	Non	Coti	10130	9:30	•	8:2)	Chit.	Sido	illoch	9.00	10:20	13:00	0:00	Siter)	2:16	11.11	9:00	1115	10:00	Sell 1	TIME		JUL
	(A)P	1203	212	TF	76	71:	TC		503	35	3K	Rog	803	1/2	フト	602	HAUN	MLd	The	PAB	TE	11	-10-	the	ŧ	ろ下	-11-	TI	715	4	17	Chk'd		
	3343234	3293345	3289786	3284439	2282402	HOHLIZ	3279292		Burgeres	3266687	3262654	92.18 Sef.	325 1463	3243354	223/087		LEDSE	9009662	1455225	SUPPORT	AMMLI2S	3215409	32/2670			5771025	3204644	2199900	5197788	3/46/22	JAAAN	401 (m3)	Totalizer	FL
	1479F	33791	3677990	36-24420	364070	3676730	60480%		364120	3600709	3597867	CRESHSE	त्रक कार	359495-8	3244345		3587507	5St 538	H.04.52	12569251	3573/20	3570948	32981126			3562879	3559793	3556153	3554055	3552344	3550027	402 (m3)	Totalizer	WO
102	1958	35-19	3578	3576	3574	7574	2570		3995	7928	2955	1955	3561	35-61	3570	3454	3556	3554	225	8455	3545	3541	3539			3527	3524	3520	35-17	35-11	80.52	#	Starts	7
	19761	LAPEU	13636	15626	13616	13607	13/12		13579	13567	13554	13543	13519	12494	13471	NR3460	LANS/	4 8481	13431	13421	13412	50461	26661			13379	13367	13354	13347	14.51	13332	(hrs)	Time	eactor 40
	1910	are	7759	2757	2755	2252	HSL2.		1918	2749	2747	Shee	THUE	1741	2739	2132	2546	este	2732	056	2728	2726	2725			2719	2718	2715	2714	11/2	012	#	Wipes	1
	2255	3542	3591	32.84	8852	1555.	2266		C838	3579	3575	3574	いろち	2573	3573	357	5569	3567	22.52	3563	0255	3577	3524			3542	3539	7652	3531	3256	2258	#	Starts	R
	08 Ch1	14755	14743	14732	14715	14707	14681		14668	14658	1416418	14940	14640	14639	14637	9241-1	14616	14604	14570	14581	14571	H224	22271			14538	14528	14511	14570	14503	14495	(hrs)	Time	eactor 40
	See	9696	1282	2823	12821	2820	8182		3815	2814	2612	1186	1196	018	2810	1000	1907	880S	2803	2803	2820	2TRS	2796			2790	2785	2787	2785	2793	1812	#	Wipes	12
401/402	401(402)	401/402	401/402	401/402	401/402	401/402	401/402	401/402	403/402	401(402)	401/402	401/402	(401)402	401/402	401/402	401/402	401/402	401/402	401/402	401/402	401/402	401/402	401/402	401/402	401/402	401/402	401/402	401(402)	401/402	401/402	401/402		Reactor	Dunning
	148	1-1-1	5	8h1		105	0.51		101	153	102	101	44	10/	153	102	-	157	1621	104	104	104	167	167		105		162			801	(W/m2)	1	Lar
	121	Del	124	821		173	128		164	131	166	1901	160	185	121	191		130	MO	169	ちょう	166	141	140		166		130			161	(W/m2)	2	np Intens
	121	122	18	176		170	123	>	105	124	165	104	160	105	221	100		121	125-	111	172	172	129	124		169		130			166	(W/m2)	3	ity
	124	P.	130	124		12	126		1	177	ū	E	116	177	621	A.L	i	13M	1210	125	170	121	131	3		115		130			127	(W/m2)	UV SP	Do
Ľ	15.2	3.67	5.75	3.15		5.54	3.66		3.36	3.66	3.33	5.50	514	3.12	3.56	3:16		3.40	3.36	5.13	3.24	225	3.69	3.62		3.32		5.14			3,20	Log	Validated	sage
1	52	57	2g	20		46	8		13	90	18	8.1	200	28	89	**	1.4	90	49	10	NB NB	48	8X	202		87		45-			98	(LPS)		Flow
	1.12	1.1	212	51.2	77.0	93.C	816		1.1	41.6	92	12.6	91.9	CNO	90.7	15	2	87.5	404	9.68	2.0	84.8	100	284		90.6	818	Sil-	90,5	907	0,48	%		UVT
	17	11	24	17	1	7.7	7.7		7.5	7.7	7.5	1.5	1.3	21	1.7	101		7.7	81	1.6	1.0	24	5.8	0.8		75		77.			7.6	(KWH)	Bank 1	Pov
	لير	3.1	5.8	Li	-	11	37		<u>.</u>	3.8	41.0	4.0	50	4.0	3.7	3	T	20	83	51.1	4d	4.1	3.00	3.5		4.1		4.1			41	(KWH)	Bank 2	wer

ł	ų	30	20	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9		7	6	5	4	ω	2	_	DA	1	24
UGUS.	110	134	11:0	-	120	910	1014		10		54		11:2	-19	513	123	122	123	1301	55	8:15	FE	430	in	E	K di	i2	1030	1115	E L	Sicl	TIM		AUG
-	5	15 -	1 20		R	e i	15 -		50		2 at	>	3	モー	R	e P	P	OR	E C	W C	7 Ho	R	2	R	DR	2	to to	OR	P	0 20	d	E		UST
	203	ガ	2		3	1º	11		03		25	-	T	デ	03	S	3	B	50	101	24	00	30	50	S	50	B	30 30	3	P	TP	nk'd		
	1,40985	3386972	3384908		3383194	3860544	3379345		BLACLES		3365351		5359181	3355811	07865E	3448	3346542	33H3 177	1340663	337515	3354053	333438	1222209	ee hhees	1212121	5030181	314033	304593	320656	29813	8295608	401 (m3)	Totalizer	권
	3729416	3127277	3725385		9010205	3720562	3718125		3713797		3.08218		3703291	3700121	3696431	364633	36485	1-958995	395395	E 491 395	3679207	54541.92	3674161	hi155995	366 5944	11 11 2995	3627829	3655708	EOCES9E	3648774	3645101	402 (m3)	Totalizer	OW
	1-995	3660	3655		2644	SHU.	3636		3629			5695	3615	3615	3613	3610	3608	3605	3440	3596	3593	ELSS	393	3590	3590	3289	1935	3288	3556	3554	2285	#	Starts	T
	12924	13955	(3947		Stue!	13937	1282H		13104			13889	13862	13851	12841	13830	13820	13809	13801	127941	13780	13778	13753	13749	13727	1374	13704	13981	13675	13668	85921	(hrs)	Time	Reactor 40
	4612	2811	2009	1	9000	7804	2802		ppre			SULP	2791	2789	2187	981 E	2784	esle	1815	X15	Ltte	LLLE	375	EL LE	11.00	69LE.	SALE	996	SALE	2763	2762	#	Wipes	2
	3674	3670	3660	The second	1595	2652	3647		3641			3632	3630	3627	362-1	3622	3621	9195	2615	SLOP	3653	3602	3601	3600	3600	3524	3598	L655	9256	35514	3243	#	Starts	7
	15072	12009	15060		12041	15040	12234		8151			10021	14984	14974	14962	IVAST	14944	14537	LCONI	HIBH	14906	125-1	14690	14663	14563	14857	25841	14836	Ce 341	14808	JULM	(hrs)	Time	eactor 40
	36 16	2874	2872		1,986	1967	2865		6986			536	2856	2854	C536	1580	3850	9848	(486	2845	1844	2843	1 1936	3838	3838	L53C	588C	2634	5838	1585	0582	#	Wipes	12
401/402	403/402	401/402	400/402	401/402	4011402	407)402	401/402	401/402	401/402	401/402	401/402	401/402	401(402)	401/402	(407)/402	(401/402	401/402	401/402	4011402	401/402	401/402	(401/402	(40 TV 402	401/402	401/402	401/402	401/402	401/402	401/402	401/402	401/402)		Reactor	Running
	9149		89.4		161	100	36						139	138	5	8.HP	150		47	5.46	- /4H	98	97	96	515	145	39	Lb.	121	147	146	(W/m2)	1	Lan
	197	1	135		135	169	164						131	128	891	163	137	1	134	169	129	591	164	ē	1641	4)	165	159	653	Se	127	(W/m2) (2	ıp Intensit
	10		150.7		1 2959	167 10	160 1						132 1	22	194	129	134		SC	160	321	158	161	Ś	6	551	50	162	55	43	124	(W/m2) (3 U	Y
	116	-	108		3	90	17						29	28 3	5	011	132		961	91	921	E	126	110	118	j.	15	116	Sel	961	22	W/m2)	V SP	Dos
	3.26		3.20	1	3.92	115%	305						3.81	5	3.23	3.21	1381		81.8	3,10	3.67	3.12	3.17	3.05	2015	69.62	3,10	3.12	3.84	3.69	3.77	Log	Validatad	age
	83		00		es	18	84.41						28	89	484	128	38		58	59	45	88	88	3	R	65	22	39	38	3	R	(LPS)		Flow
	5.02	91.5-	410		91.4	91.4	41.4						C11.11	91.4	91.4	4.14	91.4		41.4	91,4	91.4	91.4	91.5	907	9.0.8	91.0	G1.7	91.3	916	80	91.1	%	-	WVT
	7.7	10 m	44		8.0	7.7	77						7.8	27	1.5	16	2.5		3.2	77	やた	7.5	9.L	31	2.5	ر. ۲. ۲	い	J.S.	7.9		27	(KWH)	Bank 1	P
	4.1	- And	4.2	-	3.5	4.1	4.1						3.8	38	4.1	4.1	3.8		20	4.1	5.7	4.0	Ē	5.0	4.0	ير	4.0	4.0	in	27	3.7	(KWH)	Bank 2	ower

September 2018

\square
E 2:811 1.98
12 153 2
120.7109.27
2 109 7
11 891 221
161.5 160 12
124.8 162.3 1.
169 156.5 N
120 167 12
1 241 591
20 155 1
120 160 1
64 137 10
16 153 10
46.6 134 11
V/m2) (W/m2) (W
2 3 UV
Intensity

00	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	ъ	4	ω	2		DAY		0
FOBER		0840	51411	10.0	5201	9:20	630	515	830	APP -	L I		008	6.30	SIG	91:11	8:28	9i45	dill	9.45	1:30	47:44	0:10	6145		INU/	00:6	1:15	515	(WYU)	5.50	TIME		OCTOE
		AND (TL	MK	JAK	74	Rog	RUG	523	Kuly	>		Rog	203	7	7	7	コニ	TE	TIC	TC	た	7	E3		Pug	7	7	RUN	KR	X	Chk'd		ÊR
		UJF	3H	344	344	. 344	34	SHAB	3440	3Hb			343	CH5	343	ete	343	343	343	3433	343	343	340	545		343	St.	343	3430	STE.	3425	401	Tota	
		+7458	1829	5404	4350	12692	2436	581	1274	196			1936	740	6290	6035	4900	4644	4123	945	3719	33	8898	153		5591	SHH9	0945	129	9m	163	(m3)	lizer	FLO
		3791	3791	37912	3790	3790	37899	3.1881	13945	51875			37840	3,15,74	2783	3720	3780	3780	3779	37795	3779	3778	3778	377779		3777	いちん	3776	37 158	31752	37745	402 (n	Totaliz	W
-		883	4363	5 20	323 3	1973	6	22	で	27 2			129 3	14 3	2333	2003	103	E 12C	797 3	203	340 3	8823	C OH	5 3	_	5 122	:5983:	5413	8 3	48 3	15 3	n3)	zer S	
		802	1208	OCS	299	384	197	196	195 1	1 HbL			191	165 1	1424	1986	584	1 484	183	181 1	1004	出	RPR I	TTS 1		172	to -	1881	166 1	1901	761	#	tarts	Re
		14236	42X	4122	14215	14203	14201	14199	1186	4185			14164	41691	HS7	HSS	オカモ	414S	HHS	HH3	442	9 E E	FI13	H138		14135	F33	4132	4130	SUN	14125	(hrs)	Time	actor 40
		2400	2800	289-	2596	3896	Hb8e	545	11580	DLAC	-		3866	988e	288	4822	2883	2882	182	2879	8480	48×	3480	513		01.Se	2818	286	9986	5986	5982	#	Wipes	Ä
-		382	1382	362	352	382	7895	.885	3822	352	-		3618	3815	125.1	- 38/	371	3810	380	3905	380	200	386	3801		379	37	745-1-	3742	3791	378	#	Start	
-	8.	15	8 153	SSI L	6 153	5 15:	+ 153	5	1530	155			153	155	S IS	+ 15	2 15	25/ 0	9 157	5 157	1155	27	3 152	150		5 153	77152	15 150	. 152	631 0	2 12	(hr	s Tim	Reacto
-		52	632	\$2 20	55 2	542	6650	10 De	99 99	35 399			16 20	06 30	びよん	012	842	2 18	80 29	25 54	7825	262	びや	33 24		6 00	69 87	16720	65 29	00 59	60 20	(s	ie W	or 402
L		962	961	Ē	259	856	57	56	5	5			144	F	七大	The second	34	S.ht	242	41	140	138 (131	5		132	131	730	2	Le	326	*	ipes	
401/402	401/402	401/402	401/402	401/402	401/402	401,402	4011402	401/402	401/402	401/402	401/402	401/402	401/402	401/402	401/402	401/402	401(402	401/402	401/402	401/402	401/402	401/402	401/402	401/402	401/402	401/402	401(402	401/402	401/402	401/402	401/402		Reactor	Punning
			583		66		94	001 6		60 6			60 64		196.2	1	0 999.9					=					133	1	-			(W/m:	-	
			S 108.		ş		83	L9		68			83		841		85.3					146.6					1410					2) (W/m2	2	.amp Inter
F			499.2		SL		107	112		901			112		14.5		116					0139.1					59.3) (W/m2)	3	ısity
			24.9		5		1	3	-	2			75		5.5		ない					118.2					4					(W/m2)	UV SP	0
			4.18		3.80		4.38	4.53		418			4.15		4.19		4.26					3.48					3,81					Log	Validated	osage
F		¢	39.1		35		25	S	-	ci J	8		20		39.6		30.2					03.3				-	143					(LPS)		Flow
		92.4	00.2		91.7	t.16	1.eb	91.1		R 02			5.18		90.3	90.6	90,5	87	8.88	50.1	91.5	90.	9				91.3	90.9			97.1	%		UVT
			55		H H		0.0	6.1		60			6.0		6		6.1					4					1.9					(KWH)	Bank 1	Po
		1	2		2.5		0.0	2.2		2.5.			0.0		82.00		2.8					4,1					3,8					(KWH)	Bank 2	Wer

October 2018

NOVEN	31	30	29 0	28 9	27	26	25 0	24 1	23 0	22 0	21 5	20	19	18 5	17 /	16 0	15	14	13	12 0	11 8	10 8	9	8	7 1	6	5 N	4 10	3	2 1		DAY .		NO
IBER			100	15		55	1:57	O:O	1:15	130	3115	ŝ		NID	0.00	11:4	230			:32	G	1:06	33	DOD	10	S	8	000	50	055	山田	TIME		VEMB
			ER	503		A	NK	3K	ゴ	Pag.	R	1	593	-77-	T.	7	na	72		NCY	HON ,	May	ろだ	ROB	BUS	No.	35	603	ES	EK.	(0R)	Chk'd		Ŗ
			3469992	3468348		24/249	3464711	3463814	3462825	3462585	3462124	3460693	342043	3458203	3457783	3450290	3455974	3455613		t It hShE	3453050	3452807	3452577	HLAE SAS	2566.94E	3450748	3450501	3450164	SILVER	3499530	349920	401 (m3)	Totalizer	며
			3910557	9650185		361 get 2	3510017	3809 768	3809559	L109,092	2907783	3807783	169205	3807794	189905	3306332	3806092	3804550		SELFOR	ZCSC035	3602003	35006.73	9968145	heldber E	3798484	3797304	3796189	3795037	373794	3493306	402 (m3)	Totalizer	OW
			3036	5833		36 30	3828	3828	3826	36%	5625	3823	EE85	3821	3820	3820	3516	7188		5185	713814		3513	312	1155	3810	3809	Linss.	3206	3855	3504	#	Starts	T
			19358	14386		14278	14340	14354	4441	14345	19392	14331	4320	14318	14311	14300	14297	14295		1429C	14.277		14274	(12)3	1 Lehi	14260	IH259	95661	1425-1	14251	TACK O	(hrs)	Time	Reactor 4
			2632	ache		Jage	2926	2926	2924	2993	7092	2921	are	12919	8162	81120	2916	2915		2913	2912		2911	0166	boye	Save	2907	Sobe	9964	5 026	2016	#	Wipes	01
			3863	0986		12852	3856	3855	3854	3853	2962	1585	0585	3944	3848	3847	3947	1148		3941	3840	3840	3839	3535	1835	3636	3835	3834	3832	1982	1535	#	Starts	Л
			15507	12205	5	15990	15496	15446	15494	15833	18481	12481	PS451	154K	15475	HSH-	114969	12428		1544S	IS4343	1543ª	GEHSI	15418	15416	154141	15406	Lb5.51	15389	1576	15377	(hrs)	Time	Reactor 4
			5456	Juble A		145	2991	2990	2989	88be	2987	£868	925C	2993	1862	2983	2982	2981		9496	したち	946	2975	Sube	erbe	1166	CLIZ	998C	396	13465	h 95C	#	Wipes	02
401/402	401/402	401/402	401/402	401/402	401/402	401/402	401/402	(40)/402	401/402	401/402	4011 402	401/402	401/402	401/402	401/402	401/402	401/402	401/402	401/402	401/402	401/402	401/402)	401/402	401/402	(40)/402	401/402	401/402	401/402	401/402	401/402	401/402		Reactor	Dimaina
			91.3		V. rak	AN.		1:68			2.9					SH8	f					5.2	24.9	05	5			44		1	63	(W/m2)	1	La
		-	04.7					9.011			105					811)					26.1	H	104	101		4	3		(2	(W/m2)	2	mp Inter
			130.2					99.3			64.					106.3	١					914	00	95	2			104		١	5	(W/m2	3	sity
			245		No. of Street, or Stre		1	22			70.1					73.4	46.3					2.69	6.7	65	63			11		1	59) (W/m2)	UV SP	D
			4.24	No.		- 200		H.2H			9.10				-	4.35	1					4.15	4.18	4.04	60.17			4.37		1	4.02	Log	Validatad	osage
			37.65				2	39.4			20. K					39.32	ŀ				-	36	37	ر. ر	3			22		I.	39	(LPS)		Flow
			96.1		1	90.0		9.16	526		qu4	202	1	1/19	930	8.26	92.2	8.2				92.Y	91.6	00.1	L.00		-	92%		2112	5	%		INT
			6.1				-	5.8			200					5.9	1				1	6.0	Sa	5	5.6		-	6.0		1	6.0	(KWH)	Bank 1	P
			200				2	30			30					3.0	1					28	3,0	30	3.0		0	20)¢	2.6	(KWH)	Bank 2	ower

DECH	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	თ	ъ	4	ω	2	_	DAY		
EMBER	516	05 101	into	54:11	12:00	1000	7100	1130		1057	630	8.19		9:31	800	8:8	8:00	5%:33	000	0813		82		8:5	200		200	008	500			TIME		CEME
	K03	2712	1/2	15	Th	11	114	TIE		35	ROA	35		2	803	1	TL	TL	SP	63		Raz		3K	ROD		209	203	203			Chk'd		SER
	3488467	3489369	b/186H	348 7337	3481 187	3485939	34444846	7193917		3483435	3481878	3481046		3481099	3480862	Stellthe	3478982	3478741	3477126	3439LHE		8 CL.9 LHS		JIOSCHE	3474779		7 MSLAS	3473351	3472134			401 (m3)	Totalizer	FLI
	36776	174 SSSL	3832144	2821982	383/72/	3830153	28554916	3829673		3527720	3827479	3827-7-5		3824522	3823370	382314	3822593	3821332	283 1163	3831086		1551135		3917059	3815658		3514762	3814531	3812937			402 (m3)	Totalizer	OW
	SEFT	38/37	3866	3995	12885	2883	3863	3862		3660	3858	1535		3854	6598	852	1585	3850	3849	3848		19847		5H95	17486.		3842	3840	3634			#	Starts	70
	hs thi	14529	14527	14125	14514	14572	HSON	14498		14491	14463	14461		tthh	9 LANI	14464	14462	14460	1444	14447		14446		14434	14432	1	eehhi	14415	11413			(hrs)	Time	eactor 4
	5000	1961	7910	2960	2958	2957	2956	2955		2953	CSbC	2951		2949	3448	the	2946	2445	Stitte	2943		PHA		2940	9639		965E	95be	2935			##	Wipes	PI PI
	1195	3996	5895	3894	3893	2425	11.85	3870		3655	355	3857		3883	1985	3880	3880	3878	3878	3877		3873		3871	1125		3868	1985	3866			#	Starts	-
	16670	12-10	1545	12920	15650	1564	12/4	15639		15625	6231	ISEIS		315600	15594	155%	8885	15579	15578	15557		15353		15 SHe	15539		15532	15531	15519			(hrs)	Time	Reactor 4
	\$4 30	3020	5205 3	302	92021	3205	1 3024	3023		3020	3019	3019		SOIT	13015	30H	4108	30/2	3012	3011		3007		3005	3004		3001	200	9clobel			#	Wipes	02
401/402	401/402	401/402	401/402	401/402	401/402	401/402	401/402	401/402	401/402	401/402	401/402	401/402	401/402	401/402	401/402	401/402	401/402	401/402	401/402	401/402	401/402	401/402	401/402	401/402	401/402	401/402	(401/402	401/402	401/402	401/402	401/402		Reactor	Running
	29			28			484					62		82			5,48		8						08		19					(W/m2)	1	La
	2		N. N	112			113					30		41/8			8:28		98						73		L.01					(Wim2)	2	mp Intens
	20			41			1001				-	E.		113.1			111		CPC1						101		93					(W/m2)	3	ity
	し、こ			7.1			75					<u>ن</u>		¥			3,87		94					-	69		5					(W/m2)	dS AN	Do
	4.36			4.30			4.17					4.25		4.10			4,20		He H						بن 84 ند		LIH					Log	Validated	sage
	3			39			Sel	ø				39.5		39.64		-	39.54		85						28		39					(LPS)		Flow
	8.16	276	53.2	47.4	43.0	0.25	21.58	92.0				92		4.68		80.7	20.4	91.4	000						89.1		90.2					%		UVT
	5.5			8:5			5.5					0		5			6		6.1					1	6.0		5.5					(KWH)	Bank 1	Po
	2.0			2.0			3.0					28		e.R			200		3.8						2.5	1	2.0					(KWH)	Bank 2	wer

Appendix I – Environmental Operators Certification Program (EOCP)

The EOCP Board of Directors, with the approval of the Ministry of Health, recently changed the water treatment facility definition. As such, since our chlorination facilities are method of *primary disinfection*, to produce potable water, they are now classified as water treatment facilities.

According to the EOCP, primary disinfection can include chlorination and ultraviolet of which we utilize alone or combined in our facilities. With this new definition, Operators are now required to update their certification to include water treatment. With the EOCP and Ministry of Health changing our facility classifications to Water Treatment facilities, Section 12 of the BC Drinking Water Protection Regulation requires that our operators now must now also obtain Water Treatment Certification through the EOCP. All operators now are also required to accumulate operator experience toward Water Distribution and Water Treatment certification.

Name	Certification No.	Level
Mike Mitchell	1839	WD-IV, CH, WT-I
Rob Witzke	1841	WD-II, CH
Patti Meger	4838	WT-I, CH, WD-I, T-I
Kiel Wilkie	6503	WD-III, CH
Tyler Friedrich	7697	WD-II, WT-I
Mike Kristensen	8344	WD-I, WT-I
Tessa Luison	1000130	WD-I, CH
Evan Kemp	8114	WWT-III, WWC-1, CH